Чему равен наибольший общий делитель. Общий делитель и кратное

Эта статья посвящена такому вопросу, как нахождение наибольшего общего делителя. Сначала мы объясним, что это такое, и приведем несколько примеров, введем определения наибольшего общего делителя 2 , 3 и более чисел, после чего остановимся на общих свойствах данного понятия и докажем их.

Yandex.RTB R-A-339285-1

Что такое общие делители

Чтобы понять, что из себя представляет наибольший общий делитель, сначала сформулируем, что вообще такое общий делитель для целых чисел.

В статье о кратных и делителях мы говорили, что у целого числа всегда есть несколько делителей. Здесь же нас интересуют делители сразу некоторого количества целых чисел, особенно общие (одинаковые) для всех. Запишем основное определение.

Определение 1

Общим делителем нескольких целых чисел будет такое число, которое может быть делителем каждого числа из указанного множества.

Пример 1

Вот примеры такого делителя: тройка будет общим делителем для чисел - 12 и 9 , поскольку верны равенства 9 = 3 · 3 и − 12 = 3 · (− 4) . У чисел 3 и - 12 есть и другие общие делители, такие, как 1 , − 1 и − 3 . Возьмем другой пример. У четырех целых чисел 3 , − 11 , − 8 и 19 будет два общих делителя: 1 и - 1 .

Зная свойства делимости, мы можем утверждать, что любое целое число можно разделить на единицу и минус единицу, значит, у любого набора целых чисел уже будет как минимум два общих делителя.

Также отметим, что если у нас есть общий для нескольких чисел делитель b , то те же числа можно разделить и на противоположное число, то есть на - b . В принципе, мы можем взять лишь положительные делители, тогда все общие делители также будут больше 0 . Такой подход также можно использовать, однако совсем игнорировать отрицательные числа не следует.

Что такое наибольший общий делитель (НОД)

Согласно свойствам делимости, если b является делителем целого числа a , которое не равно 0, то модуль числа b не может быть больше, чем модуль a , следовательно, любое число, не равное 0 , имеет конечное число делителей. Значит, число общих делителей нескольких целых чисел, хотя бы одно из которых отличается от нуля, также будет конечным, и из всего их множества мы всегда можем выделить самое большое число (ранее мы уже говорили о понятии наибольшего и наименьшего целого числа, советуем вам повторить данный материал).

В дальнейших рассуждениях мы будем считать, что хотя бы одно из множества чисел, для которых нужно найти наибольший общий делитель, будет отлично от 0 . Если они все равны 0 , то их делителем может быть любое целое число, а поскольку их бесконечно много, выбрать наибольшее мы не сможем. Иначе говоря, найти наибольший общий делитель для множества чисел, равных 0 , нельзя.

Переходим к формулировке основного определения.

Определение 2

Наибольшим общим делителем нескольких чисел является самое большое целое число, которое делит все эти числа.

На письме наибольший общий делитель чаще всего обозначается аббревиатурой НОД. Для двух чисел его можно записать как НОД (a , b) .

Пример 2

Какой можно привести пример НОД для двух целых чисел? Например, для 6 и - 15 это будет 3 . Обоснуем это. Сначала запишем все делители шести: ± 6 , ± 3 , ± 1 , а потом все делители пятнадцати: ± 15 , ± 5 , ± 3 и ± 1 . После этого мы выбираем общие: это − 3 , − 1 , 1 и 3 . Из них надо выбрать самое большое число. Это и будет 3 .

Для трех и более чисел определение наибольшего общего делителя будет почти таким же.

Определение 3

Наибольшим общим делителем трех чисел и более будет самое большое целое число, которое будет делить все эти числа одновременно.

Для чисел a 1 , a 2 , … , a n делитель удобно обозначать как НОД (a 1 , a 2 , … , a n) . Само значение делителя записывается как НОД (a 1 , a 2 , … , a n) = b .

Пример 3

Приведем примеры наибольшего общего делителя нескольких целых чисел: 12 , - 8 , 52 , 16 . Он будет равен четырем, значит, мы можем записать, что НОД (12 , - 8 , 52 , 16) = 4 .

Проверить правильность данного утверждения можно с помощью записи всех делителей этих чисел и последующего выбора наибольшего из них.

На практике часто встречаются случаи, когда наибольший общий делитель равен одному из чисел. Это происходит тогда, когда на данное число можно разделить все остальные числа (в первом пункте статьи мы привели доказательство этого утверждения).

Пример 4

Так, наибольший общий делитель чисел 60 , 15 и - 45 равен 15 , поскольку пятнадцать делится не только на 60 и - 45 , но и на само себя, и большего делителя для всех этих чисел не существует.

Особый случай составляют взаимно простые числа. Они представляют собой целые числа с наибольшим общим делителем, равным 1 .

Основные свойства НОД и алгоритм Евклида

У наибольшего общего делителя есть некоторые характерные свойства. Сформулируем их в виде теорем и докажем каждое из них.

Отметим, что данные свойства сформулированы для целых чисел больше нуля, а делители мы рассмотрим только положительные.

Определение 4

Числа a и b имеют наибольший общий делитель, равный НОД для b и a , то есть НОД (a , b) = НОД (b , a) . Перемена мест чисел не влияет на конечный результат.

Данное свойство следует из самого определения НОД и не нуждается в доказательствах.

Определение 5

Если число a можно разделить на число b , то множество общих делителей этих двух чисел будет аналогично множеству делителей числа b , то есть НОД (a , b) = b .

Докажем это утверждение.

Доказательство 1

Если у чисел a и b есть общие делители, то на них можно разделить любое из них. В то же время если a будет кратным b, то любой делитель b будет делителем и для a , поскольку у делимости есть такое свойство, как транзитивность. Значит, любой делитель b будет общим для чисел a и b . Это доказывает, что если мы можем разделить a на b , то множество всех делителей обоих чисел совпадет с множеством делителей одного числа b . А поскольку наибольший делитель любого числа есть само это число, то наибольший общий делитель чисел a и b будет также равен b , т.е. НОД (a , b) = b . Если a = b , то НОД (a , b) = НОД (a , a) = НОД (b , b) = a = b , например, НОД (132 , 132) = 132 .

Используя это свойство, мы можем найти наибольший общий делитель двух чисел, если одно из них можно разделить на другое. Такой делитель равен одному из этих двух чисел, на которое можно разделить второе число. К примеру, НОД (8 , 24) = 8 , так как 24 есть число, кратное восьми.

Определение 6 Доказательство 2

Попробуем доказать данное свойство. У нас изначально есть равенство a = b · q + c , и любой общий делитель a и b будет делить и c , что объясняется соответствующим свойством делимости. Поэтому любой общий делитель b и c будет делить a . Значит, множество общих делителей a и b совпадет с множеством делителей b и c , в том числе и наибольшие из них, значит, равенство НОД (a , b) = НОД (b , c) справедливо.

Определение 7

Следующее свойство получило название алгоритма Евклида. С его помощью можно вычислить наибольший общий делитель двух чисел, а также доказать другие свойства НОД.

Перед тем, как сформулировать свойство, советуем вам повторить теорему, которую мы доказывали в статье о делении с остатком. Согласно ей, делимое число a можно представить в виде b · q + r , причем b здесь является делителем, q – некоторым целым числом (его также называют неполным частным), а r – остатком, который удовлетворяет условию 0 ≤ r ≤ b .

Допустим, у нас есть два целых числа больше 0 , для которых будут справедливы следующие равенства:

a = b · q 1 + r 1 , 0 < r 1 < b b = r 1 · q 2 + r 2 , 0 < r 2 < r 1 r 1 = r 2 · q 3 + r 3 , 0 < r 3 < r 2 r 2 = r 3 · q 4 + r 4 , 0 < r 4 < r 3 ⋮ r k - 2 = r k - 1 · q k + r k , 0 < r k < r k - 1 r k - 1 = r k · q k + 1

Эти равенства заканчиваются тогда, когда r k + 1 становится равен 0 . Это случится обязательно, поскольку последовательность b > r 1 > r 2 > r 3 , … представляет собой ряд убывающих целых чисел, который может включать в себя только конечное их количество. Значит, r k является наибольшим общим делителем a и b , то есть, r k = НОД (a , b) .

В первую очередь нам надо доказать, что r k – это общий делитель чисел a и b , а после этого – то, что r k является не просто делителем, а именно наибольшим общим делителем двух данных чисел.

Просмотрим список равенств, приведенный выше, снизу вверх. Согласно последнему равенству,
r k − 1 можно разделить на r k . Исходя из этого факта, а также предыдущего доказанного свойства наибольшего общего делителя, можно утверждать, что r k − 2 можно разделить на r k , так как
r k − 1 делится на r k и r k делится на r k .

Третье снизу равенство позволяет нам сделать вывод, что r k − 3 можно разделить на r k , и т.д. Второе снизу – что b делится на r k , а первое – что a делится на r k . Из всего этого заключаем, что r k – общий делитель a и b .

Теперь докажем, что r k = НОД (a , b) . Что для этого нужно сделать? Показать, что любой общий делитель a и b будет делить r k . Обозначим его r 0 .

Просмотрим тот же список равенств, но уже сверху вниз. Исходя из предыдущего свойства, можно заключить, что r 1 делится на r 0 , значит, согласно второму равенству r 2 делится на r 0 . Идем по всем равенствам вниз и из последнего делаем вывод, что r k делится на r 0 . Следовательно, r k = НОД (a , b) .

Рассмотрев данное свойство, заключаем, что множество общих делителей a и b аналогично множеству делителей НОД этих чисел. Это утверждение, которое является следствием из алгоритма Евклида, позволит нам вычислить все общие делители двух заданных чисел.

Перейдем к другим свойствам.

Определение 8

Если a и b являются целыми числами, не равными 0 , то должны существовать два других целых числа u 0 и v 0 , при которых будет справедливым равенство НОД (a , b) = a · u 0 + b · v 0 .

Равенство, приведенное в формулировке свойства, является линейным представлением наибольшего общего делителя a и b . Оно носит название соотношения Безу, а числа u 0 и v 0 называются коэффициентами Безу.

Доказательство 3

Докажем данное свойство. Запишем последовательность равенств по алгоритму Евклида:

a = b · q 1 + r 1 , 0 < r 1 < b b = r 1 · q 2 + r 2 , 0 < r 2 < r 1 r 1 = r 2 · q 3 + r 3 , 0 < r 3 < r 2 r 2 = r 3 · q 4 + r 4 , 0 < r 4 < r 3 ⋮ r k - 2 = r k - 1 · q k + r k , 0 < r k < r k - 1 r k - 1 = r k · q k + 1

Первое равенство говорит нам о том, что r 1 = a − b · q 1 . Обозначим 1 = s 1 и − q 1 = t 1 и перепишем данное равенство в виде r 1 = s 1 · a + t 1 · b . Здесь числа s 1 и t 1 будут целыми. Второе равенство позволяет сделать вывод, что r 2 = b − r 1 · q 2 = b − (s 1 · a + t 1 · b) · q 2 = − s 1 · q 2 · a + (1 − t 1 · q 2) · b . Обозначим − s 1 · q 2 = s 2 и 1 − t 1 · q 2 = t 2 и перепишем равенство как r 2 = s 2 · a + t 2 · b , где s 2 и t 2 также будут целыми. Это объясняется тем, что сумма целых чисел, их произведение и разность также представляют собой целые числа. Точно таким же образом получаем из третьего равенства r 3 = s 3 · a + t 3 · b , из следующего r 4 = s 4 · a + t 4 · b и т.д. В конце заключаем, что r k = s k · a + t k ·b при целых s k и t k . Поскольку r k = НОД (a , b) , обозначим s k = u 0 и t k = v 0 , В итоге мы можем получить линейное представление НОД в требуемом виде: НОД (a , b) = a · u 0 + b · v 0 .

Определение 9

НОД (m · a , m · b) = m · НОД (a , b) при любом натуральном значении m .

Доказательство 4

Обосновать это свойство можно так. Умножим на число m обе стороны каждого равенства в алгоритме Евклида и получим, что НОД (m · a , m · b) = m · r k , а r k – это НОД (a , b) . Значит, НОД (m · a , m · b) = m ·НОД (a , b) . Именно это свойство наибольшего общего делителя используется при нахождении НОД методом разложения на простые множители.

Определение 10

Если у чисел a и b есть общий делитель p , то НОД (a: p , b: p) = НОД (a , b) : p . В случае, когда p = НОД (a , b) получим НОД (a: НОД (a , b) , b: НОД (a , b) = 1 , следовательно, числа a: НОД (a , b) и b: НОД (a , b) являются взаимно простыми.

Поскольку a = p · (a: p) и b = p · (b: p) , то, основываясь на предыдущем свойстве, можно создать равенства вида НОД (a , b) = НОД (p · (a: p) , p · (b: p)) = p ·НОД (a: p , b: p) , среди которых и будет доказательство данного свойства. Это утверждение мы используем, когда приводим обыкновенные дроби к несократимому виду.

Определение 11

Наибольшим общим делителем a 1 , a 2 , … , a k будет число d k , которое можно найти, последовательно вычисляя НОД (a 1 , a 2) = d 2 , НОД (d 2 , a 3) = d 3 , НОД (d 3 , a 4) = d 4 , … , НОД (d k - 1 , a k) = d k .

Это свойство полезно при нахождении наибольшего общего делителя трех и более чисел. С помощью него можно свести это действие к операциям с двумя числами. Его основой является следствие из алгоритма Евклида: если множество общих делителей a 1 , a 2 и a 3 совпадает с множеством d 2 и a 3 , то оно совпадет и с делителями d 3 . Делители чисел a 1 , a 2 , a 3 и a 4 совпадут с делителями d 3 , значит, они совпадут и с делителями d 4 , и т.д. В конце мы получим, что общие делители чисел a 1 , a 2 , … , a k совпадут с делителями d k , а поскольку наибольшим делителем числа d k будет само это число, то НОД (a 1 , a 2 , … , a k) = d k .

Это все, что мы хотели бы рассказать о свойствах наибольшего общего делителя.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Чтобы научиться находить наибольший общий делитель двух или нескольких чисел, необходимо разобраться с тем, что представляют из себя натуральные, простые и сложные числа.


Натуральным называется любое число, которое используется при подсчете целых предметов.


Если натуральное число можно разделить только на само себя и единицу, то его называют простым.


Все натуральные числа можно разделить на себя и единицу, однако единственным четным простым числом является 2, все остальные можно поделить на двойку. Поэтому простыми могут быть только нечетные числа.


Простых чисел достаточно много, полного списка их не существует. Для нахождения НОД удобно использовать специальные таблицы с такими числами.


Большинство натуральных чисел могут делиться не только на единицу, самих себя, но и на другие числа. Так, например, число 15 можно поделить еще на 3 и 5. Все их называют делителями числа 15.


Таким образом, делитель любого А - это число, на которое оно может быть разделено без остатка. Если у числа имеется более двух натуральных делителей, его называют составным.


У числа 30 можно выделить такие делители, как 1, 3, 5, 6, 15, 30.


Можно заметить, что 15 и 30 имеют одинаковые делители 1, 3, 5, 15. Наибольший общий делитель этих двух чисел - 15.


Таким образом, общим делителем чисел А и Б называется такое число, на которое можно поделить их нацело. Наибольшим можно считать максимальное общее число, на которое можно их разделить.


Для решения задач используется такая сокращенная надпись:


НОД (А; Б).


Например, НОД (15; 30) = 30.


Чтобы записать все делители натурального числа, применяется запись:


Д (15) = {1, 3, 5, 15}



НОД (9; 15) = 1


В данном примере у натуральных чисел имеется только один общий делитель. Их называют взаимно простыми, соответственно единица и является их наибольшим общим делителем.

Как найти наибольший общий делитель чисел

Чтобы найти НОД нескольких чисел, нужно:


Найти все делители каждого натурального числа по отдельности, то есть разложить их на множители (простые числа);


Выделить все одинаковые множители у данных чисел;


Перемножить их между собой.


Например, чтобы вычислить наибольший общий делитель чисел 30 и 56, нужно записать следующее:




Чтобы не путаться при , удобно записывать множители при помощи вертикальных столбиков. В левой части от черты нужно разместить делимое, а в правой - делитель. Под делимым следует указать получившееся частное.


Так, в правом столбце окажутся все нужные для решения множители.


Одинаковые делители (найденные множители) можно для удобства подчеркнуть. Их следует переписать и перемножить и записать наибольший общий делитель.





НОД (30; 56) = 2 * 5 = 10


Вот так просто на самом деле найти наибольший общий делитель чисел. Если немного потренироваться, делать это можно будет практически на автомате.

Второе число: b=

Разделитель разрядов Без разделителя пробел " ´

Результат:

Наибольший общий делитель НОД(a ,b )=6

Наименьшее общее кратное НОК(a ,b )=468

Наибольшее натуральное число, на которое делятся без остатка числа a и b, называется наибольшим общим делителем (НОД) этих чисел. Обозначается НОД(a,b), (a,b), gcd(a,b) или hcf(a,b).

Наименьшее общее кратное (НОК) двух целых чисел a и b есть наименьшее натуральное число, которое делится на a и b без остатка. Обозначается НОК(a,b), или lcm(a,b).

Целые числа a и b называются взаимно простыми , если они не имеют никаких общих делителей кроме +1 и −1.

Наибольший общий делитель

Пусть даны два положительных числа a 1 и a 2 1). Требуется найти общий делитель этих чисел, т.е. найти такое число λ , которое делит числа a 1 и a 2 одновременно. Опишем алгоритм.

1) В данной статье под словом число будем понимать целое число.

Пусть a 1 ≥ a 2 , и пусть

где m 1 , a 3 некоторые целые числа, a 3 <a 2 (остаток от деления a 1 на a 2 должен быть меньше a 2).

Предположим, что λ делит a 1 и a 2 , тогда λ делит m 1 a 2 и λ делит a 1 −m 1 a 2 =a 3 (Утверждение 2 статьи "Делимость чисел. Признак делимости"). Отсюда следует, что всякий общий делитель a 1 и a 2 является общим делителем a 2 и a 3 . Справедливо и обратное, если λ общий делитель a 2 и a 3 , то m 1 a 2 и a 1 =m 1 a 2 +a 3 также делятся на λ . Следовательно общий делитель a 2 и a 3 есть также общий делитель a 1 и a 2 . Так как a 3 <a 2 ≤a 1 , то можно сказать, что решение задачи по нахождению общего делителя чисел a 1 и a 2 сведено к более простой задаче нахождения общего делителя чисел a 2 и a 3 .

Если a 3 ≠0, то можно разделить a 2 на a 3 . Тогда

,

где m 1 и a 4 некоторые целые числа, (a 4 остаток от деления a 2 на a 3 (a 4 <a 3)). Аналогичными рассуждениями мы приходим к выводу, что общие делители чисел a 3 и a 4 совпадают с общими делителями чисел a 2 и a 3 , и также с общими делителями a 1 и a 2 . Так как a 1 , a 2 , a 3 , a 4 , ... числа, постоянно убывающие, и так как существует конечное число целых чисел между a 2 и 0, то на каком то шаге n , остаток от деления a n на a n+1 будет равен нулю (a n+2 =0).

.

Каждый общий делитель λ чисел a 1 и a 2 также делитель чисел a 2 и a 3 , a 3 и a 4 , .... a n и a n+1 . Справедливо и обратное, общие делители чисел a n и a n+1 являются также делителями чисел a n−1 и a n , .... , a 2 и a 3 , a 1 и a 2 . Но общий делитель чисел a n и a n+1 является число a n+1 , т.к. a n и a n+1 без остатка делятся на a n+1 (вспомним, что a n+2 =0). Следовательно a n+1 является и делителем чисел a 1 и a 2 .

Отметим, что число a n+1 является наибольшим из делителей чисел a n и a n+1 , так как наибольший делитель a n+1 является сам a n+1 . Если a n+1 можно представить в виде произведения целых чисел, то эти числа также являются общими делителями чисел a 1 и a 2 . Число a n+1 называют наибольшим общим делителем чисел a 1 и a 2 .

Числа a 1 и a 2 могут быть как положительными, так и отрицательными числами. Если один из чисел равен нулю, то наибольший общий делитель этих чисел будет равен абсолютной величине другого числа. Наибольший общий делитель нулевых чисел не определен.

Вышеизложенный алгоритм называется алгоритмом Евклида для нахождения наибольшего общего делителя двух целых чисел.

Пример нахождения наибольшего общего делителя двух чисел

Найти наибольший общий делитель двух чисел 630 и 434.

  • Шаг 1. Делим число 630 на 434. Остаток 196.
  • Шаг 2. Делим число 434 на 196. Остаток 42.
  • Шаг 3. Делим число 196 на 42. Остаток 28.
  • Шаг 4. Делим число 42 на 28. Остаток 14.
  • Шаг 5. Делим число 28 на 14. Остаток 0.

На шаге 5 остаток от деления равен 0. Следовательно наибольший общий делитель чисел 630 и 434 равен 14. Заметим, что числа 2 и 7 также являются делителями чисел 630 и 434.

Взаимно простые числа

Определение 1. Пусть наибольший общий делитель чисел a 1 и a 2 равен единице. Тогда эти числа называются взаимно простыми числами , не имеющими общего делителя.

Теорема 1. Если a 1 и a 2 взаимно простые числа, а λ какое то число, то любой общий делитель чисел λa 1 и a 2 является также общим делителем чисел λ и a 2 .

Доказательство. Рассмотрим алгоритм Евклида для нахождения наибольшего общего делителя чисел a 1 и a 2 (см. выше).

.

Из условия теоремы следует, что наибольшим общим делителем чисел a 1 и a 2 , и следовательно a n и a n+1 является 1. Т.е. a n+1 =1.

Умножим все эти равенства на λ , тогда

.

Пусть общий делитель a 1 λ и a 2 есть δ . Тогда δ входит множителем в a 1 λ , m 1 a 2 λ и в a 1 λ -m 1 a 2 λ =a 3 λ (см. "Делимость чисел",Утверждение 2). Далее δ входит множителем в a 2 λ и m 2 a 3 λ , и, следовательно, входит множителем в a 2 λ -m 2 a 3 λ =a 4 λ .

Рассуждая так мы убеждаемся, что δ входит множителем в a n−1 λ и m n−1 a n λ , и, следовательно, в a n−1 λ m n−1 a n λ =a n+1 λ . Так как a n+1 =1, то δ входит множителем в λ . Следовательно число δ является общим делителем чисел λ и a 2 .

Рассмотрим частные случаи теоремы 1.

Следствие 1. Пусть a и c простые числа относительно b . Тогда их произведение ac является простым числом относительно b .

Действительно. Из теоремы 1 ac и b имеют тех же общих делителей, что и c и b . Но числа c и b взаимно простые, т.е. имеют единственный общий делитель 1. Тогда ac и b также имеют единственный общий делитель 1. Следовательно ac и b взаимно простые.

Следствие 2. Пусть a и b взаимно простые числа и пусть b делит ak . Тогда b делит и k .

Действительно. Из условия утверждения ak и b имеют общий делитель b . В силу теоремы 1, b должен быть общим делителем b и k . Следовательно b делит k .

Следствие 1 можно обобщить.

Следствие 3. 1. Пусть числа a 1 , a 2 , a 3 , ..., a m простые относительно числа b . Тогда a 1 a 2 , a 1 a 2 ·a 3 , ..., a 1 a 2 a 3 ···a m , произведение этих чисел простое относительно числа b .

2. Пусть имеем два ряда чисел

таких, что каждое число первого ряда простое по отношению каждого числа второго ряда. Тогда произведение

Требуется найти такие числа, которые делятся на каждое из этих чисел.

Если число делится на a 1 , то оно имеет вид sa 1 , где s какое-нибудь число. Если q есть наибольший общий делитель чисел a 1 и a 2 , то

где s 1 - некоторое целое число. Тогда

является наименьшим общим кратным чисел a 1 и a 2 .

a 1 и a 2 взаимно простые, то наименьшее общее кратное чисел a 1 и a 2:

Нужно найти наименьшее общее кратное этих чисел.

Из вышеизложенного следует, что любое кратное чисел a 1 , a 2 , a 3 должно быть кратным чисел ε и a 3 , и обратно. Пусть наименьшее общее кратное чисел ε и a 3 есть ε 1 . Далее, кратное чисел a 1 , a 2 , a 3 , a 4 должно быть кратным чисел ε 1 и a 4 . Пусть наименьшее общее кратное чисел ε 1 и a 4 есть ε 2 . Таким образом выяснили, что все кратные чисел a 1 , a 2 , a 3 ,...,a m совпадают с кратными некоторого определенного числа ε n , которое называют наименьшим общим кратным данных чисел.

В частном случае, когда числа a 1 , a 2 , a 3 ,...,a m взаимно простые, то наименьшее общее кратное чисел a 1 , a 2 как было показано выше имеет вид (3). Далее, так как a 3 простое по отношению к числам a 1 , a 2 , тогда a 3 простое по отношению числа a 1 ·a 2 (Следствие 1). Значит наименьшее общее кратное чисел a 1 ,a 2 ,a 3 является число a 1 · a 2 ·a 3 . Рассуждая аналогичным образом мы приходим к следующим утверждениям.

Утверждение 1. Наименьшее общее кратное взаимно простых чисел a 1 , a 2 , a 3 ,...,a m равен их произведению a 1 ·a 2 ·a 3 ···a m .

Утверждение 2. Любое число, которое делится на каждое из взаимно простых чисел a 1 , a 2 , a 3 ,...,a m делится также на их произведение a 1 ·a 2 ·a 3 ···a m .

Ланцинова Айса

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Задачи на НОД и НОК чисел Работа ученицы 6 класса МКОУ «Камышовская ООШ» Ланциновой Айсы Руководитель Горяева Зоя Эрднигоряевна, учитель математики с. Камышово, 2013г

Пример нахождения НОД чисел 50, 75 и 325. 1) Разложим числа 50, 75 и 325 на простые множители. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙ 13 2) Из множителей входящих в разложение одного из этих чисел, вычеркнем те, которые не входят в разложение других. 50= 2 ∙ 5 ∙ 5 75= 3 ∙ 5 ∙ 5 325= 5 ∙ 5 ∙13 3) Найдём произведение оставшихся множителей 5 ∙ 5 = 25 Ответ: НОД (50, 75 и 325)= 25 Наибольшее натуральное число, на которое делятся без остатка числа a и b называют наибольшим общим делителем этих чисел.

Пример нахождения НОК чисел 72, 99 и 117. 1) Разложим на простые множители числа 72, 99 и 117. 72 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 99 = 3 ∙ 3 ∙ 11 117 = 3 ∙ 3 ∙13 2) Выписать множители, входящих в разложение одного из чисел 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 и добавить к ним недостающие множители остальных чисел. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13 3)Найдите произведение получившихся множителей. 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11 ∙ 13= 10296 Ответ: НОК (72, 99 и 117) = 10296 Наименьшим общим кратным натуральных чисел a и b называют наименьшее натуральное число, которое кратно a и b .

Лист картона имеет форму прямоугольника, длина которого 48 см., а ширина 40 см. Этот лист надо разрезать без отходов на равные квадраты. Какие наибольшие квадраты можно получить из этого листа и сколько? Решение: 1) S = a ∙ b – площадь прямоугольника. S= 48 ∙ 40 = 1960 см ² . – площадь картона. 2) a – сторона квадрата 48: a – число квадратов, которое можно уложить по длине картона. 40: а – число квадратов, которое можно уложить по ширине картона. 3) НОД (40 и 48) = 8(см) – сторона квадрата. 4) S = a² – площадь одного квадрата. S = 8² = 64 (см ² .) – площадь одного квадрата. 5) 1960: 64 = 30 (количество квадратов). Ответ: 30 квадратов со стороной 8 см каждый. Задачи на НОД

Камин в комнате необходимо выложить отделочной плиткой в форме квадрата. Сколько плиток понадобится для камина размером 195 ͯ 156 см и каковы наибольшие размеры плитки? Решение: 1) S = 196 ͯ 156 = 30420 (см ²) – S поверхности камина. 2) НОД (195 и 156) = 39 (см) – сторона плитки. 3) S = a² = 39² = 1521 (см ²) – площадь 1 плитки. 4) 30420: = 20 (штук). Ответ: 20 плиток размером 39 ͯ 39 (см). Задачи на НОД

Садовый участок размером 54 ͯ 48 м по периметру необходимо оградить забором, для этого через равные промежутки надо поставить бетонные столбы. Сколько столбов необходимо привезти для участка, и на каком максимальном расстоянии друг от друга будут стоять столбы? Решение: 1) P = 2(a + b) – периметр участка. P = 2(54 + 48) = 204 м. 2) НОД (54 и 48) = 6 (м) – расстояние между столбами. 3) 204: 6 = 34 (столба). Ответ: 34 столба, на расстоянии 6 м. Задачи на НОД

Из 210 бордовых, 126 белых, 294 красных роз собрали букеты, причём в каждом букете количество роз одного цвета поровну. Какое наибольшее количество букетов сделали из этих роз и сколько роз каждого цвета в одном букете? Решение: 1) НОД (210, 126 и 294) = 42 (букета). 2) 210: 42 = 5 (бордовых роз). 3) 126: 42 = 3 (белых роз). 4) 294: 42 = 7 (красных роз). Ответ: 42 букета: 5 бордовых, 3 белых, 7 красных роз в каждом букете. Задачи на НОД

Таня и Маша купили одинаковое число почтовых наборов. Таня заплатила 90 руб., а Маша на 5 руб. больше. Сколько стоит один набор? Сколько наборов купила каждая? Решение: 1) 90 + 5 = 95 (руб.) заплатила Маша. 2) НОД (90 и 95) = 5 (руб.) – цена 1 набора. 3) 980: 5 = 18 (наборов) – купила Таня. 4) 95: 5 = 19 (наборов) – купила Маша. Ответ: 5 рублей, 18 наборов, 19 наборов. Задачи на НОД

В портовом городе начинаются три туристских теплоходных рейса, первый из которых длится 15 суток, второй – 20 и третий – 12 суток. Вернувшись в порт, теплоходы в этот же день снова отправляются в рейс. Сегодня из порта вышли теплоходы по всем трём маршрутам. Через сколько суток они впервые снова вместе уйдут в плавание? Какое количество рейсов сделает каждый теплоход? Решение: 1) НОК (15,20 и 12) = 60 (суток) – время встречи. 2) 60: 15 = 4 (рейса) – 1 теплоход. 3) 60: 20 = 3 (рейса) – 2 теплоход. 4) 60: 12 = 5 (рейсов) – 3 теплоход. Ответ: 60 суток, 4 рейса, 3 рейса, 5 рейсов. Задачи на НОК

Маша для Медведя купила в магазине яйца. По дороге в лес она сообразила, что число яиц делится на 2,3,5,10 и 15. Сколько яиц купила Маша? Решение: НОК (2;3;5;10;15) = 30 (яиц) Ответ: Маша купила 30 яиц. Задачи на НОК

Требуется изготовить ящик с квадратным дном для укладки коробок размером 16 ͯ 20 см. Какова должна быть наименьшая длина стороны квадратного дна, чтобы уместить коробки в ящик вплотную? Решение: 1) НОК (16 и 20) = 80 (коробок). 2) S = a ∙ b – площадь 1 коробки. S = 16 ∙ 20 = 320 (см ²) – площадь дна 1 коробки. 3) 320 ∙ 80 = 25600 (см ²) – площадь квадратного дна. 4) S = а² = а ∙ а 25600 = 160 ∙ 160 – размеры ящика. Ответ: 160 см- сторона квадратного дна. Задачи на НОК

Вдоль дороги от пункта К стоят столбы электролинии через каждые 45 м. Эти столбы решили заменить другими, поставив их на расстоянии 60 м друг от друга. Сколько столбов было и сколько будут стоять? Решение: 1) НОК (45 и 60) = 180. 2) 180: 45 = 4 –было столбов. 3) 180: 60 = 3 – стало столбов. Ответ: 4 столба, 3 столба. Задачи на НОК

Сколько солдат маршируют на плацу, если они будут маршировать строем по 12 человек в шеренге и перестраиваться в колонну по 18 человек в шеренге? Решение: 1)НОК (12 и 18) = 36 (человек) – маршируют. Ответ: 36 человек. Задачи на НОК

Наибольшее натуральное число, на которое делятся без остатка числа a и b, называют наибольшим общим делителем этих чисел. Обозначают НОД(a, b).

Рассмотрим нахождения НОД на примере двух натуральных чисел 18 и 60:

  • 1 Разложим числа на простые множители:
    18 = 2 × 3 × 3
    60 = 2 × 2 × 3 × 5
  • 2 Вычеркнуть из разложения первого числа все множители которые не входят в разложения второго числа, получим 2 × 3 × 3 .
  • 3 Перемножаем оставшиеся простые множители после вычеркивания и получаем наибольший общий делитель чисел: НОД(18 , 60 )=2 × 3 = 6 .
  • 4 Заметим что не важно из первого или второго числа вычеркиваем множители, результат будет одинаков:
    18 = 2 × 3 × 3
    60 = 2 × 2 × 3 × 5
  • 324 , 111 и 432

    Разложим числа на простые множители:

    324 = 2 × 2 × 3 × 3 × 3 × 3

    111 = 3 × 37

    432 = 2 × 2 × 2 × 2 × 3 × 3 × 3

    Вычеркнуть из первого числа, множители которых нету во втором и третьем числе, получим:

    2 × 2 × 2 × 2 × 3 × 3 × 3 = 3

    В результате НОД(324 , 111 , 432 )=3

    Нахождение НОД с помощью алгоритма Евклида

    Второй способ нахождения наибольшего общего делителя с помощью алгоритма Евклида . Алгоритм Евклида является наиболее эффективным способом нахождения НОД , используя его нужно постоянно находить остаток от деления чисел и применять рекуррентную формулу .

    Рекуррентная формула для НОД, НОД(a, b)=НОД(b, a mod b) , где a mod b — остаток от деления a на b.

    Алгоритм Евклида
    Пример Найти наибольший общий делитель чисел 7920 и 594

    Найдем НОД(7920 , 594 ) с помощью алгоритма Евклида, вычислять остаток от деления будем с помощью калькулятора.

  • НОД(7920 , 594 )
  • НОД(594 , 7920 mod 594 ) = НОД(594 , 198 )
  • НОД(198 , 594 mod 198 ) = НОД(198 , 0 )
  • НОД(198 , 0 ) = 198
    • 7920 mod 594 = 7920 — 13 × 594 = 198
    • 594 mod 198 = 594 — 3 × 198 = 0
    • В результате получаем НОД(7920 , 594 ) = 198

      Наименьшее общее кратное

      Для того, чтобы находить общий знаменатель при сложении и вычитании дробей с разными знаменателями необходимо знать и уметь рассчитывать наименьшее общее кратное (НОК).

      Кратное числу « a » - это число, которое само делится на число « a » без остатка.

      Числа кратные 8 (то есть, эти числа разделятся на 8 без остатка): это числа 16, 24, 32 …

      Кратные 9: 18, 27, 36, 45 …

      Чисел, кратных данному числу a бесконечно много, в отличии от делителей этого же числа. Делителей - конечное количество.

      Общим кратным двух натуральных чисел называется число, которое делится на оба эти числа нацело .

      Наименьшим общим кратным (НОК) двух и более натуральных чисел называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел.

      Как найти НОК

      НОК можно найти и записать двумя способами.

      Первый способ нахождения НОК

      Данный способ обычно применяется для небольших чисел.

    1. Выписываем в строчку кратные для каждого из чисел, пока не найдётся кратное, одинаковое для обоих чисел.
    2. Кратное числа « a » обозначаем большой буквой «К».

    Пример. Найти НОК 6 и 8 .

    Второй способ нахождения НОК

    Этот способ удобно использовать, чтобы найти НОК для трёх и более чисел.

    Количество одинаковых множителей в разложениях чисел может быть разное.

  • Подчеркнуть в разложении меньшего числа (меньших чисел) множители, которые не вошли в разложение бóльшего числа (в нашем примере это 2) и добавить эти множители в разложение бóльшего числа.
    НОК (24, 60) = 2 · 2 · 3 · 5 · 2
  • Полученное произведение записать в ответ.
    Ответ: НОК (24, 60) = 120
  • Оформить нахождение наименьшего общего кратного (НОК) можно также следующим образом. Найдём НОК (12, 16, 24) .

    24 = 2 · 2 · 2 · 3

    Как видим из разложения чисел, все множители 12 вошли в разложение 24 (самого бóльшего из чисел), поэтому в НОК добавляем только одну 2 из разложения числа 16 .

    НОК (12, 16, 24) = 2 · 2 · 2 · 3 · 2 = 48

    Ответ: НОК (12, 16, 24) = 48

    Особые случаи нахождения НОК

  • Если одно из чисел делится нацело на другие, то наименьшее общее кратное этих чисел равно этому числу.
  • Например, НОК (60, 15) = 60
    Так как взаимно простые числа не имеют общих простых делителей, то их наименьшее общее кратное равно произведению этих чисел.

    На нашем сайте вы также можете с помощью специального калькулятора найти наименьшее общее кратное онлайн, чтобы проверить свои вычисления.

    Если натуральное число делится только на 1 и на само себя, то оно называется простым.

    Любое натуральное число всегда делится на 1 и на само себя.

    Число 2 - наименьшее простое число. Это единственное чётное простое число, остальные простые числа - нечётные.

    Простых чисел много, и первое среди них - число 2 . Однако нет последнего простого числа. В разделе «Для учёбы» вы можете скачать таблицу простых чисел до 997 .

    Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

    • число 12 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 ;
    • число 36 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 , на 18 , на 36 .
    • Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12) называются делителями числа.

      Делитель натурального числа a - это такое натуральное число, которое делит данное число « a » без остатка.

      Натуральное число, которое имеет более двух делителей называется составным.

      Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12 . Наибольший из делителей этих чисел - 12 .

      Общий делитель двух данных чисел « a » и « b » - это число, на которое делятся без остатка оба данных числа « a » и « b ».

      Наибольший общий делитель (НОД) двух данных чисел « a » и « b » - это наибольшее число, на которое оба числа « a » и « b » делятся без остатка.

      Кратко наибольший общий делитель чисел « a » и « b » записывают так :

      Пример: НОД (12; 36) = 12 .

      Делители чисел в записи решения обозначают большой буквой «Д».

      Числа 7 и 9 имеют только один общий делитель - число 1 . Такие числа называют взаимно простыми числами .

      Взаимно простые числа - это натуральные числа, которые имеют только один общий делитель - число 1 . Их НОД равен 1 .

      Как найти наибольший общий делитель

      Чтобы найти НОД двух или более натуральных чисел нужно:

    • разложить делители чисел на простые множители;
    • Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое, справа - делитель. Далее в левом столбце записываем значения частных.

      Поясним сразу на примере. Разложим на простые множители числа 28 и 64 .

      Подчёркиваем одинаковые простые множители в обоих числах.
      28 = 2 · 2 · 7

    64 = 2 · 2 · 2 · 2 · 2 · 2
    Находим произведение одинаковых простых множителей и записать ответ;
    НОД (28; 64) = 2 · 2 = 4

    Ответ: НОД (28; 64) = 4

    Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».

    Первый способ записи НОД

    Найти НОД 48 и 36 .

    НОД (48; 36) = 2 · 2 · 3 = 12

    Второй способ записи НОД

    Теперь запишем решение поиска НОД в строчку. Найти НОД 10 и 15 .

    На нашем информационном сайте вы также можете с помощью программы помощника найти наибольший общий делитель онлайн, чтобы проверить свои вычисления.

    Нахождение наименьшего общего кратного, способы, примеры нахождения НОК.

    Представленный ниже материал является логическим продолжением теории из статьи под заголовком НОК — наименьшее общее кратное, определение, примеры, связь между НОК и НОД. Здесь мы поговорим про нахождение наименьшего общего кратного (НОК) , и особое внимание уделим решению примеров. Сначала покажем, как вычисляется НОК двух чисел через НОД этих чисел. Дальше рассмотрим нахождение наименьшего общего кратного с помощью разложения чисел на простые множители. После этого остановимся на нахождении НОК трех и большего количества чисел, а также уделим внимание вычислению НОК отрицательных чисел.

    Навигация по странице.

    Вычисление наименьшего общего кратного (НОК) через НОД

    Один из способов нахождения наименьшего общего кратного основан на связи между НОК и НОД. Существующая связь между НОК и НОД позволяет вычислять наименьшее общее кратное двух целых положительных чисел через известный наибольший общий делитель. Соответствующая формула имеет вид НОК(a, b)=a·b:НОД(a, b) . Рассмотрим примеры нахождения НОК по приведенной формуле.

    Найдите наименьшее общее кратное двух чисел 126 и 70 .

    В этом примере a=126 , b=70 . Воспользуемся связью НОК с НОД, выражающуюся формулой НОК(a, b)=a·b:НОД(a, b) . То есть, сначала нам предстоит найти наибольший общий делитель чисел 70 и 126 , после чего мы сможем вычислить НОК этих чисел по записанной формуле.

    Найдем НОД(126, 70) , используя алгоритм Евклида: 126=70·1+56 , 70=56·1+14 , 56=14·4 , следовательно, НОД(126, 70)=14 .

    Теперь находим требуемое наименьшее общее кратное: НОК(126, 70)=126·70:НОД(126, 70)= 126·70:14=630 .

    Чему равно НОК(68, 34) ?

    Так как 68 делится нацело на 34 , то НОД(68, 34)=34 . Теперь вычисляем наименьшее общее кратное: НОК(68, 34)=68·34:НОД(68, 34)= 68·34:34=68 .

    Заметим, что предыдущий пример подходит под следующее правило нахождения НОК для целых положительные чисел a и b: если число a делится на b , то наименьшее общее кратное этих чисел равно a .

    Нахождение НОК с помощью разложения чисел на простые множители

    Другой способ нахождения наименьшего общего кратного базируется на разложении чисел на простые множители. Если составить произведение из всех простых множителей данных чисел, после чего из этого произведения исключить все общие простые множители, присутствующие в разложениях данных чисел, то полученное произведение будет равно наименьшему общему кратному данных чисел .

    Озвученное правило нахождения НОК следует из равенства НОК(a, b)=a·b:НОД(a, b) . Действительно, произведение чисел a и b равно произведению всех множителей, участвующих в разложениях чисел a и b . В свою очередь НОД(a, b) равен произведению всех простых множителей, одновременно присутствующих в разложениях чисел a и b (о чем написано в разделе нахождение НОД с помощью разложения чисел на простые множители).

    Приведем пример. Пусть мы знаем, что 75=3·5·5 и 210=2·3·5·7 . Составим произведение из всех множителей данных разложений: 2·3·3·5·5·5·7 . Теперь из этого произведения исключим все множители, присутствующие и в разложении числа 75 и в разложении числа 210 (такими множителями являются 3 и 5), тогда произведение примет вид 2·3·5·5·7 . Значение этого произведения равно наименьшему общему кратному чисел 75 и 210 , то есть, НОК(75, 210)= 2·3·5·5·7=1 050 .

    Разложив числа 441 и 700 на простые множители, найдите наименьшее общее кратное этих чисел.

    Разложим числа 441 и 700 на простые множители:

    Получаем 441=3·3·7·7 и 700=2·2·5·5·7 .

    Теперь составим произведение из всех множителей, участвующих в разложениях данных чисел: 2·2·3·3·5·5·7·7·7 . Исключим из этого произведения все множители, одновременно присутствующие в обоих разложениях (такой множитель только один – это число 7): 2·2·3·3·5·5·7·7 . Таким образом, НОК(441, 700)=2·2·3·3·5·5·7·7=44 100 .

    НОК(441, 700)= 44 100 .

    Правило нахождения НОК с использованием разложения чисел на простые множители можно сформулировать немного иначе. Если ко множителям из разложения числа a добавить недостающие множители из разложения числа b , то значение полученного произведения будет равно наименьшему общему кратному чисел a и b .

    Для примера возьмем все те же числа 75 и 210 , их разложения на простые множители таковы: 75=3·5·5 и 210=2·3·5·7 . Ко множителям 3 , 5 и 5 из разложения числа 75 добавляем недостающие множители 2 и 7 из разложения числа 210 , получаем произведение 2·3·5·5·7 , значение которого равно НОК(75, 210) .

    Найдите наименьшее общее кратное чисел 84 и 648 .

    Получаем сначала разложения чисел 84 и 648 на простые множители. Они имеют вид 84=2·2·3·7 и 648=2·2·2·3·3·3·3 . К множителям 2 , 2 , 3 и 7 из разложения числа 84 добавляем недостающие множители 2 , 3 , 3 и 3 из разложения числа 648 , получаем произведение 2·2·2·3·3·3·3·7 , которое равно 4 536 . Таким образом, искомое наименьшее общее кратное чисел 84 и 648 равно 4 536 .

    Нахождение НОК трех и большего количества чисел

    Наименьшее общее кратное трех и большего количества чисел может быть найдено через последовательное нахождение НОК двух чисел. Напомним соответствующую теорему, дающую способ нахождения НОК трех и большего количества чисел.

    Пусть даны целые положительные числа a 1 , a 2 , …, a k , наименьшее общее кратное m k этих чисел находится при последовательном вычислении m 2 =НОК(a 1 , a 2) , m 3 =НОК(m 2 , a 3) , …, m k =НОК(m k−1 , a k) .

    Рассмотрим применение этой теоремы на примере нахождения наименьшего общего кратного четырех чисел.

    Найдите НОК четырех чисел 140 , 9 , 54 и 250 .

    Сначала находим m 2 =НОК(a 1 , a 2)=НОК(140, 9) . Для этого по алгоритму Евклида определяем НОД(140, 9) , имеем 140=9·15+5 , 9=5·1+4 , 5=4·1+1 , 4=1·4 , следовательно, НОД(140, 9)=1 , откуда НОК(140, 9)=140·9:НОД(140, 9)= 140·9:1=1 260 . То есть, m 2 =1 260 .

    Теперь находим m 3 =НОК(m 2 , a 3)=НОК(1 260, 54) . Вычислим его через НОД(1 260, 54) , который также определим по алгоритму Евклида: 1 260=54·23+18 , 54=18·3 . Тогда НОД(1 260, 54)=18 , откуда НОК(1 260, 54)= 1 260·54:НОД(1 260, 54)= 1 260·54:18=3 780 . То есть, m 3 =3 780 .

    Осталось найти m 4 =НОК(m 3 , a 4)=НОК(3 780, 250) . Для этого находим НОД(3 780, 250) по алгоритму Евклида: 3 780=250·15+30 , 250=30·8+10 , 30=10·3 . Следовательно, НОД(3 780, 250)=10 , откуда НОК(3 780, 250)= 3 780·250:НОД(3 780, 250)= 3 780·250:10=94 500 . То есть, m 4 =94 500 .

    Таким образом, наименьшее общее кратное исходных четырех чисел равно 94 500 .

    НОК(140, 9, 54, 250)=94 500 .

    Во многих случаях наименьшее общее кратное трех и большего количества чисел удобно находить с использованием разложений данных чисел на простые множители. При этом следует придерживаться следующего правила. Наименьшее общее кратное нескольких чисел равно произведению, которое составляется так: ко всем множителям из разложения первого числа добавляются недостающие множители из разложения второго числа, к полученным множителям добавляются недостающие множители из разложения третьего числа и так далее .

    Рассмотрим пример нахождения наименьшего общего кратного с использованием разложения чисел на простые множители.

    Найдите наименьшее общее кратное пяти чисел 84 , 6 , 48 , 7 , 143 .

    Сначала получаем разложения данных чисел на простые множители: 84=2·2·3·7 , 6=2·3 , 48=2·2·2·2·3 , 7 (7 – простое число, оно совпадает со своим разложением на простые множители) и 143=11·13 .

    Для нахождения НОК данных чисел к множителям первого числа 84 (ими являются 2 , 2 , 3 и 7) нужно добавить недостающие множители из разложения второго числа 6 . Разложение числа 6 не содержит недостающих множителей, так как и 2 и 3 уже присутствуют в разложении первого числа 84 . Дальше к множителям 2 , 2 , 3 и 7 добавляем недостающие множители 2 и 2 из разложения третьего числа 48 , получаем набор множителей 2 , 2 , 2 , 2 , 3 и 7 . К этому набору на следующем шаге не придется добавлять множителей, так как 7 уже содержится в нем. Наконец, к множителям 2 , 2 , 2 , 2 , 3 и 7 добавляем недостающие множители 11 и 13 из разложения числа 143 . Получаем произведение 2·2·2·2·3·7·11·13 , которое равно 48 048 .

    Следовательно, НОК(84, 6, 48, 7, 143)=48 048 .

    НОК(84, 6, 48, 7, 143)=48 048 .

    Нахождение наименьшего общего кратного отрицательных чисел

    Иногда встречаются задания, в которых требуется найти наименьшее общее кратное чисел, среди которых одно, несколько или все числа являются отрицательными. В этих случаях все отрицательные числа нужно заменить противоположными им числами, после чего находить НОК положительных чисел. В этом и состоит способ нахождения НОК отрицательных чисел. Например, НОК(54, −34)=НОК(54, 34) , а НОК(−622, −46, −54, −888)= НОК(622, 46, 54, 888) .

    Мы можем так поступать, потому что множество кратных числа a совпадает со множеством кратных числа −a (a и −a – противоположные числа). Действительно, пусть b – какое-то кратное числа a , тогда b делится на a , и понятие делимости утверждает существование такого целого числа q , что b=a·q . Но будет справедливо и равенство b=(−a)·(−q) , которое в силу того же понятия делимости означает, что b делится на −a , то есть, b есть кратное числа −a . Справедливо и обратное утверждение: если b – какое-то кратное числа −a , то b является кратным и числа a .

    Найдите наименьшее общее кратное отрицательных чисел −145 и −45 .

    Заменим отрицательные числа −145 и −45 на противоположные им числа 145 и 45 . Имеем НОК(−145, −45)=НОК(145, 45) . Определив НОД(145, 45)=5 (например, по алгоритму Евклида), вычисляем НОК(145, 45)=145·45:НОД(145, 45)= 145·45:5=1 305 . Таким образом, наименьшее общее кратное отрицательных целых чисел −145 и −45 равно 1 305 .

    www.cleverstudents.ru

    Продолжаем изучать деление. В данном уроке мы рассмотрим такие понятия, как НОД и НОК .

    НОД - это наибольший общий делитель.

    НОК - это наименьшее общее кратное.

    Тема довольно скучная, но разобраться в ней нужно обязательно. Не понимая этой темы, не получится эффективно работать с дробями, которые являются настоящей преградой в математике.

    Наибольший общий делитель

    Определение. Наибольшим общим делителем чисел a и b a и b делятся без остатка.

    Чтобы хорошо понять это определение, подставим вместо переменных a и b любые два числа, например, вместо переменной a подставим число 12, а вместо переменной b число 9. Теперь попробуем прочитать это определение:

    Наибольшим общим делителем чисел 12 и 9 называется наибольшее число, на которое 12 и 9 делятся без остатка.

    Из определения понятно, что речь идёт об общем делителе чисел 12 и 9, причем этот делитель является наибольшим из всех существующих делителей. Этот наибольший общий делитель (НОД) нужно найти.

    Для нахождения наибольшего общего делителя двух чисел, используется три способа. Первый способ довольно трудоёмкий, но зато позволяет хорошо понять суть темы и прочувствовать весь ее смысл.

    Второй и третий способы довольны просты и дают возможность быстро найти НОД. Мы с вами рассмотрим все три способа. А какой применять на практике - выбирать вам.

    Первый способ заключается в поиске всех возможных делителей двух чисел и в выборе наибольшего из них. Рассмотрим этот способ на следующем примере: найти наибольший общий делитель чисел 12 и 9 .

    Сначала найдём все возможные делители числа 12. Для этого разделим 12 на все делители в диапазоне от 1 до 12. Если делитель позволит разделить 12 без остатка, то мы будем выделять его синим цветом и в скобках делать соответствующее пояснение.

    12: 1 = 12
    (12 разделилось на 1 без остатка, значит 1 является делителем числа 12)

    12: 2 = 6
    (12 разделилось на 2 без остатка, значит 2 является делителем числа 12)

    12: 3 = 4
    (12 разделилось на 3 без остатка, значит 3 является делителем числа 12)

    12: 4 = 3
    (12 разделилось на 4 без остатка, значит 4 является делителем числа 12)

    12: 5 = 2 (2 в остатке)
    (12 не разделилось на 5 без остатка, значит 5 не является делителем числа 12)

    12: 6 = 2
    (12 разделилось на 6 без остатка, значит 6 является делителем числа 12)

    12: 7 = 1 (5 в остатке)
    (12 не разделилось на 7 без остатка, значит 7 не является делителем числа 12)

    12: 8 = 1 (4 в остатке)
    (12 не разделилось на 8 без остатка, значит 8 не является делителем числа 12)

    12: 9 = 1 (3 в остатке)
    (12 не разделилось на 9 без остатка, значит 9 не является делителем числа 12)

    12: 10 = 1 (2 в остатке)
    (12 не разделилось на 10 без остатка, значит 10 не является делителем числа 12)

    12: 11 = 1 (1 в остатке)
    (12 не разделилось на 11 без остатка, значит 11 не является делителем числа 12)

    12: 12 = 1
    (12 разделилось на 12 без остатка, значит 12 является делителем числа 12)

    Теперь найдём делители числа 9. Для этого проверим все делители от 1 до 9

    9: 1 = 9
    (9 разделилось на 1 без остатка, значит 1 является делителем числа 9)

    9: 2 = 4 (1 в остатке)
    (9 не разделилось на 2 без остатка, значит 2 не является делителем числа 9)

    9: 3 = 3
    (9 разделилось на 3 без остатка, значит 3 является делителем числа 9)

    9: 4 = 2 (1 в остатке)
    (9 не разделилось на 4 без остатка, значит 4 не является делителем числа 9)

    9: 5 = 1 (4 в остатке)
    (9 не разделилось на 5 без остатка, значит 5 не является делителем числа 9)

    9: 6 = 1 (3 в остатке)
    (9 не разделилось на 6 без остатка, значит 6 не является делителем числа 9)

    9: 7 = 1 (2 в остатке)
    (9 не разделилось на 7 без остатка, значит 7 не является делителем числа 9)

    9: 8 = 1 (1 в остатке)
    (9 не разделилось на 8 без остатка, значит 8 не является делителем числа 9)

    9: 9 = 1
    (9 разделилось на 9 без остатка, значит 9 является делителем числа 9)

    Теперь выпишем делители обоих чисел. Числа выделенные синим цветом и являются делителями. Их и выпишем:

    Выписав делители, можно сразу определить, какой является наибольшим и общим.

    Согласно определению, наибольшим общим делителем чисел 12 и 9, является число, на которое 12 и 9 делятся без остатка. Наибольшим и общим делителем чисел 12 и 9 является число 3

    И число 12 и число 9 делятся на 3 без остатка:

    Значит НОД (12 и 9) = 3

    Второй способ нахождения НОД

    Теперь рассмотрим второй способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, чтобы разложить оба числа на простые множители и перемножить общие из них.

    Пример 1 . Найти НОД чисел 24 и 18

    Сначала разложим оба числа на простые множители:

    Теперь перемножим их общие множители. Чтобы не запутаться, общие множители можно подчеркнуть.

    Смотрим на разложение числа 24. Первый его множитель это 2. Ищем такой же множитель в разложении числа 18 и видим, что он там тоже есть. Подчеркиваем обе двойки:

    Снова смотрим на разложение числа 24. Второй его множитель тоже 2. Ищем такой же множитель в разложении числа 18 и видим, что его там второй раз уже нет. Тогда ничего не подчёркиваем.

    Следующая двойка в разложении числа 24 также отсутствует в разложении числа 18.

    Переходим к последнему множителю в разложении числа 24. Это множитель 3. Ищем такой же множитель в разложении числа 18 и видим, что там он тоже есть. Подчеркиваем обе тройки:

    Итак, общими множителями чисел 24 и 18 являются множители 2 и 3. Чтобы получить НОД, эти множители необходимо перемножить:

    Значит НОД (24 и 18) = 6

    Третий способ нахождения НОД

    Теперь рассмотрим третий способ нахождения наибольшего общего делителя. Суть данного способа заключается в том, что числа подлежащие поиску наибольшего общего делителя раскладывают на простые множители. Затем из разложения первого числа вычеркивают множители, которые не входят в разложение второго числа. Оставшиеся числа в первом разложении перемножают и получают НОД.

    Например, найдём НОД для чисел 28 и 16 этим способом. В первую очередь, раскладываем эти числа на простые множители:

    Получили два разложения: и

    Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит семерка. Её и вычеркнем из первого разложения:

    Теперь перемножаем оставшиеся множители и получаем НОД:

    Число 4 является наибольшим общим делителем чисел 28 и 16. Оба этих числа делятся на 4 без остатка:

    Пример 2. Найти НОД чисел 100 и 40

    Раскладываем на множители число 100

    Раскладываем на множители число 40

    Получили два разложения:

    Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входит одна пятерка (там только одна пятёрка). Её и вычеркнем из первого разложения

    Перемножим оставшиеся числа:

    Получили ответ 20. Значит число 20 является наибольшим общим делителем чисел 100 и 40. Эти два числа делятся на 20 без остатка:

    НОД (100 и 40) = 20.

    Пример 3. Найти НОД чисел 72 и 128

    Раскладываем на множители число 72

    Раскладываем на множители число 128

    2 × 2 × 2 × 2 × 2 × 2 × 2

    Теперь из разложения первого числа вычеркнем множители, которые не входят в разложение второго числа. В разложение второго числа не входят две тройки (там их вообще нет). Их и вычеркнем из первого разложения:

    Получили ответ 8. Значит число 8 является наибольшим общим делителем чисел 72 и 128. Эти два числа делятся на 8 без остатка:

    НОД (72 и 128) = 8

    Нахождение НОД для нескольких чисел

    Наибольший общий делитель можно находить и для нескольких чисел, а не только для двух. Для этого числа, подлежащие поиску наибольшего общего делителя, раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел.

    Например, найдём НОД для чисел 18, 24 и 36

    Разложим на множители число 18

    Разложим на множители число 24

    Разложим на множители число 36

    Получили три разложения:

    Теперь выделим и подчеркнём общие множители в этих числах. Общие множители должны входить во все три числа:

    Мы видим, что общие множители для чисел 18, 24 и 36 это множители 2 и 3. Перемножив эти множители, мы получим НОД, который ищем:

    Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 18, 24 и 36. Эти три числа делятся на 6 без остатка:

    НОД (18, 24 и 36) = 6

    Пример 2. Найти НОД для чисел 12, 24, 36 и 42

    Разложим на простые множители каждое число. Затем найдём произведение общих множителей этих чисел.

    Разложим на множители число 12

    Разложим на множители число 42

    Получили четыре разложения:

    Теперь выделим и подчеркнём общие множители в этих числах. Общие множители должны входить во все четыре числа:

    Мы видим, что общие множители для чисел 12, 24, 36, и 42 это множители 2 и 3. Перемножив эти множители, мы получим НОД, который ищем:

    Получили ответ 6. Значит число 6 является наибольшим общим делителем чисел 12, 24, 36 и 42. Эти числа делятся на 6 без остатка:

    НОД (12, 24 , 36 и 42) = 6

    Из предыдущего урока мы знаем, что если какое-то число без остатка разделилось на другое, его называют кратным этого числа.

    Оказывается, кратное может быть общим у нескольких чисел. И сейчас нас будет интересовать кратное двух чисел, при этом оно должно быть максимально маленьким.

    Определение. Наименьшее общее кратное (НОК) чисел a и b - a и b a и число b .

    Определение содержит две переменные a и b . Давайте подставим вместо этих переменных любые два числа. Например, вместо переменной a подставим число 9, а вместо переменной b подставим число 12. Теперь попробуем прочитать определение:

    Наименьшее общее кратное (НОК) чисел 9 и 12 - это наименьшее число, которое кратно 9 и 12 . Другими словами, это такое маленькое число, которое делится без остатка на число 9 и на число 12 .

    Из определения понятно, что НОК это наименьшее число, которое делится без остатка на 9 и на 12. Этот НОК требуется найти.

    Для нахождения наименьшего общего кратного (НОК) можно пользоваться двумя способами. Первый способ заключается в том, что можно выписать первые кратные двух чисел, а затем выбрать среди этих кратных такое число, которое будет общим для обоих чисел и маленьким. Давайте применим этот способ.

    В первую очередь, найдем первые кратные для числа 9. Чтобы найти кратные для 9, нужно эту девятку поочерёдно умножить на числа от 1 до 9. Получаемые ответы будут кратными для числа 9. Итак, начнём. Кратные будем выделять красным цветом:

    Теперь находим кратные для числа 12. Для этого, поочерёдно умножаем 12 на все числа 1 до 12.

    Поделиться: