Неорганические волокна эксплуатационные свойства. Классификация текстильных волокон. Строение и свойства натуральных волокон. Общие сведения о волокнах. Классификация волокон. Основные свойства волокон и их размерные характеристики


Прогресс в области технологии производства синтетических волокон с модифицированными свойствами достиг такого уровня, при котором оказалось возможным получение армирующих материалов, способных конкурировать с неорганическими волокнами.  

Гипсовые твердые покрытия. Изготовляются из гипса и кизельгура с добавкой органического или неорганического волокна. Объемный вес 850 кз/л, коэффициент теплопроводности 0,16 ккал.и-час-град при температуре 50° С, временное сопротивление сжатию 10-40 кг/см. Применяются для защиты изоляции от механических повреждений и заменяют мокрую штукатурку.  

Неорганические волокна - асбест и стекловолокно отличаются от органических волокон прежде всего более высокой рабочей температурой.  

Неорганические волокна асбестовое, стеклянное и другие минеральные отличаются от органических прежде всего более высокой рабочей температурой.  

Одним из суш ественных достоинств термопластов, наполненных неорганическими волокнами, является повышенная по сравнению с ненаполненными теплостойкость. Это обусловлено значительно большей жесткостью полимера, вследствие которой уменьшается его деформируемость при повышенных температурах и несколько повышается температура стеклования . Если полимер хорошо смачивает наполнитель н его влияние распространяется на значительный объем, то введение наполнителя вызывает ограничение молекулярной подвижности в пограничных слоях, что  

F 125 165 Ткани из неорганического волокна -стекло, асбест с пропиткой кремнийорганическими лака .ми и эпоксидными смолами  

После известной модификации методы сопротивления материалов применимы и к деталям из анизотропных материалов . Перечень нужно начать с деревянных брусьев, переходя далее ко всякого рода композитам. Последние представляют собой достаточно пластичную матрицу , армированную высокопрочными волокнами . Матрицы и волокна могут быть как органическими, так и неорганическими, включая и металлы.  


Наполнители могут быть волокнистые и порошкообразные. Основное назначение волокнистых наполнителей - увеличение механической прочности , уменьшение хрупкости. Волокна неорганические по сравнению с органическими повышают теплостойкость по Мартенсу и нагрево-стойкость. В качестве наполнителя часто применяется древесная мука - тонкоизмельченная древесина, однако сохраняющая свою волокнистость. Она применяется в пластмассах не очень высокого качества, но зато является самым дешевым волокнистым наполнителем . Более высококачественным наполнителем, чем древесная мука , являются древесная целлюлоза и не пригодные для текстильного производства хлопковые очёсы. Благодаря более чистому и более длинному волокну очесы обеспечивают при том же связующем большую механическую прочность прессованным изделиям и лучшие электрические параметры , чем древесная мука и целлюлоза. Детали с высокой механической прочностью получают при использовании в качестве наполнителя рубленой ткани. В этом случае прессматериал получается обычно в виде текстолитовой крошки - мелко нарубленной хлопчатобумажной ткани , пропитанной соответствующими полимерами, обычно фенолформальдегид-ными.  

Конструкционные материалы. В качество материала машиностроительных конструкций используются в основном металлы и их сплавы, а также различные неорганические и органические материалы (полимеры, пластмассы, волокна, керамика и др.). В последнее время нашли применение композиционные материалы, состоящие из высокопрочных нитей стекла, бора, углерода и связующего (полимеров и металлов). В строительных конструкциях используются бетон (смесь крупных и мелких каменных частиц, скрепленных цементом), железобетон (бетон, усиленный стальными стерж-нями), кирпич, дерево и другие материалы.  

В большинстве случаев пластмассы состоят из двух основных компонентов связующего и наполнителя. Связующее - обычно органический полимер , обладающий способностью деформироваться под воздействием давления. Иногда применяется и неорганическое связующее, например стекло в микалексе, цемент в асбоцементе (6-1, 6-19). Наполнитель, прочно сцепляющийся со связующим веществом, может быть порошкообразным, волокнистым, листовым (древесная мука - мелкие опилки, каменная мука, хлопчатобумажное, асбестовое или стеклянное волокно , слюда, бумага, ткань) наполнитель существенно удешевляет пластмассу и в то же время может улучшать ее механические характеристики (увеличивать прочность, уменьшать хрупкость). Гигроскопичность и электроизоляционные свойства в результате введения наполнителя, как правило, ухудшаются, поэтому в пластмассах, от которых требуются высокие электроизоляционные свойства, наполнитель чаще всего отсутствует.  

Теплозвукоизоляция. В качестве теплозвукоизоляционных используются неорганические материалы вата минеральная , вата стеклянная из непрерывного волокна , плиты из минеральной ваты , изделия из стеклянного штапельного волокна , пено-пласты блоки пеностекла. Для защиты от солнечных лучей на окнах применяют щиты, жалюзи, занавеси из металлизированной ткани, алюминиевую фольгу.  

Неорганические композиционные материалы на основе волокон из карбида кремния . Согласно , для армирования керамики более эффективны волокна из карбида кремния , чем углеродные волокна . Ниже рассмотрены примеры таких композиционных материалов.  

Неорганические и поликристалличе-ские волокна имеют малую плотность, высокую прочность и химическую стойкость . Широко применяют углеродные, борные, стеклянные и другие волокна для армирования пластмасс и металлов.  

Помимо связующего в состав композиционных пластмасс входят следующие компоненты I) наполнители различного происхождения для повышения механической прочности , теплостойкости, уменьшения усадки и снижения стоимости композиции органические наполнители -древесная мука , хлопковые очесы, целлюлоза, хлопчатобумажная ткань , бумага, древесный шпон и др. неорганические -графит, асбест, кварц, стекловолокно, стеклоткань, волокна углерода, бора и др. 2) пластификаторы (дибутилфталат, касторовое масло и др.), увеличивающие эла-  

Стекловолокна, однако, не единственный вид волокон, используемых в настоящее время. Асбест, естественное неорганическое волокно, также обладает хорошими прочностью, модулем упругости и другими свойствами . Стальная проволока , вытянутая до малого диаметра и соответствующим образом термообработанная, может иметь прочность около 420 кгс/мм и модуль упругости в 3 раза более высокий, чем у стекловолокон. Более экзотические виды волокон интенсивно разрабатываются в настоящее время для авиационно-космической техники, к ним относятся волокна из углерода и графита, бора, бериллия и некоторых карбидов, однако они пока слищком дороги для строительной промышленности. Еще более экзотическими волокнами являются нитевидные кристаллы , прочность которых приближается к теоретической. Некоторые виды волокон и нитевидных кристаллов представлены в табл. 1 .  

В соответствии с ТУ 193-54 МСПМХН бозобжиговые теплоизоляционные изделия изготовляются из смеси диатомита или трепела, асбошифэрпых отходов, органического или неорганического волокна и минеральных вяжущих в виде плит, скорлуп и сегментов и имеют следующую характеристику  

Изделия из кремнеземных стекловолокнистых материалов. Для высокотемпературоустойчивой тепловой изоляции применяются неорганические волокна с температурой плавления 1750-1800° С кварцевое, кремнеземное и каолиновое.  

Общим для них является использование волокнистых материалов, обеспечивающих высокую прочность при растяжении, и связующих материалов типа органической смолы, при помощи которых соединяются все волокна, что и помогает равномерно распределить нагрузку по ним. В качестве основного материала могут быть использованы стекло различных видов , органические и неорганические волокна или металлы. Связующими материалами могут служить полиэфир, кремнефеноловый эпоксид или мела-12-  

Кроме того, в состав компаундов могут входить активные ра. бавители, понижающие вязкость компаунда, пластификаторы, отвердители. инициаторы и ингибиторы, назначения которых те же, что и в Лаках. В состав компаунда могут также входить наполнители - неорганические и органические порошкообразные или волокнистые материалы, применяемые для уменьшения усадки, улучшения теплопроводности, уменьшения температурного коэффициента расширения и снижения стоимости. В качестве наполнителей применяют пылевидный кварц , тальк, слюдяную пыль, асбестовое и стеклянное волокно и ряд других.  

Это волокна, получаемые из органических природных и синтетических полимеров. В зависимости от вида исходного сырья волокна химические подразделяются на синтетические (из синтетических полимеров) и искусственные (из природных полимеров). Иногда к волокнам химическим относят также волокна, получаемые из неорганических соединений (стеклянные, металлические, базальтовые, кварцевые). Волокна химические выпускают в промышленности в виде:

1) моноволокна (одиночное волокно большой длины);

2) штапельного волокна (короткие отрезки тонких волокон);

3) филаментных нитей (пучок, состоящий из большого числа тонких и очень длинных волокон, соединённых посредством крутки), филаментные нити в зависимости от назначения разделяются на текстильные и технические, или кордные нити (более толстые нити повышенной прочности и крутки).

Химические волокна - волокна (нити), получаемые промышленными способами в заводских условиях.

Химические волокна в зависимости от исходного сырья подразделяются на основные группы:

    искусственные волокна получают из природных органических полимеров (например, целлюлозы, казеина, протеинов) путем извлечения полимеров из природных веществ и химического воздействия на них

    синтетические волокна вырабатываются из синтетических органических полимеров, полученных путем реакций синтеза (полимеризации и поликонденсации) из низкомолекулярных соединений (мономеров), сырьем для которых являются продукты переработки нефти и каменного угля

    минеральные волокна - волокна, получаемые из неорганических соединений.

Историческая справка.

Возможность получения волокон химических из различных веществ (клей, смолы) предсказывалась ещё в 17 и 18 вв., но только в 1853 англичанин Аудемарс впервые предложил формовать бесконечные тонкие нити из раствора нитроцеллюлозы в смеси спирта с эфиром, а в 1891 французский инженер И. де Шардонне впервые организовал выпуск подобных нитей в производственном масштабе. С этого времени началось быстрое развитие производства химического волокон. В 1896 освоено производство медноаммиачного волокна из растворов целлюлозы в смеси водного аммиака и гидроокиси меди. В 1893 англичанами Кроссом, Бивеном и Бидлом предложен способ получения вискозных волокон из водно-щелочных растворов ксантогената целлюлозы, осуществлённый в промышленном масштабе в 1905. В 1918-20 разработан способ производства ацетатного волокна из раствора частично омыленной ацетилцеллюлозы в ацетоне, а в 1935 организовано производство белковых волокон из молочного казеина.

На фото справа ниже - не химическое волокно конечно, а х/б ткань.

Производство синтетических волокон началось с выпуска в 1932 поливинилхлоридного волокна (Германия). В 1940 в промышленном масштабе выпущено наиболее известное синтетическое волокно - полиамидное (США). Производство в промышленном масштабе полиэфирных, полиакрилонитрильных и полиолефиновых синтетических волокон осуществлено в 1954-60. Свойства. Волокна химические часто обладают высокой разрывной прочностью [до 1200 Мн/м2 (120 кгс/мм2)], значительным разрывным удлинением, хорошей формоустойчивостью, несминаемостью, высокой устойчивостью к многократным и знакопеременным нагружениям, стойкостью к действиям света, влаги, плесени, бактерий, хемои термостойкостью.

Физико-механические и физико-химические свойства волокон химическихе можно изменять в процессах формования, вытягивания, отделки и тепловой обработки, а также путём модификации как исходного сырья (полимера), так и самого волокна. Это позволяет создавать даже из одного исходного волокнообразующего полимера волокна химические, обладающие разнообразными текстильными и другими свойствами (табл.). Волокна химические можно использовать в смесях с природными волокнами при изготовлении новых ассортиментов текстильных изделий, значительно улучшая качество и внешний вид последних. Производство. Для производства волокон химических из большого числа существующих полимеров применяют лишь те, которые состоят из гибких и длинных макромолекул, линейных или слаборазветвлённых, имеют достаточно высокую молекулярную массу и обладают способностью плавиться без разложения или растворяться в доступных растворителях.

Такие полимеры принято называть волокнообразующими. Процесс складывается из следующих операций: 1) приготовления прядильных растворов или расплавов; 2) формования волокна; 3) отделки сформованного волокна. Приготовление прядильных растворов (расплавов) начинают с перевода исходного полимера в вязкотекучее состояние (раствор или расплав). Затем раствор (расплав) очищают от механических примесей и пузырьков воздуха и вводят в него различные добавки для термоили светостабилизации волокон, их матировки и т.п. Подготовленный таким образом раствор или расплав подаётся на прядильную машину для формования волокон. Формование волокон заключается в продавливании прядильного раствора (расплава) через мелкие отверстия фильеры в среду, вызывающую затвердевание полимера в виде тонких волокон.

В зависимости от назначения и толщины формуемого волокна количество отверстий в фильере и их диаметр могут быть различными. При формовании волокон химических из расплава полимера (например, полиамидных волокон) средой, вызывающей затвердевание полимера, служит холодный воздух. Если формование проводят из раствора полимера в летучем растворителе (например, для ацетатных волокон), такой средой является горячий воздух, в котором растворитель испаряется (так называемый «сухой» способ формования). При формовании волокна из раствора полимера в нелетучем растворителе (например, вискозного волокна) нити затвердевают, попадая после фильеры в специальный раствор, содержащий различные реагенты, так называемую осадительную ванну («мокрый» способ формования). Скорость формования зависит от толщины и назначения волокон, а также от метода формования.

При формовании из расплава скорость достигает 600-1200 м/мин, из раствора по «сухому» способу - 300-600 м/мин, по «мокрому» способу - 30-130 м/мин. Прядильный раствор (расплав) в процессе превращения струек вязкой жидкости в тонкие волокна одновременно вытягивается (фильерная вытяжка). В некоторых случаях волокно дополнительно вытягивается непосредственно после выхода с прядильной машины (пластификационная вытяжка), что приводит к увеличению прочности В. х. и улучшению их текстильных свойств. Отделка волокон химических заключается в обработке свежесформованных волокон различными реагентами. Характер отделочных операций зависит от условий формования и вида волокна.

При этом из волокон удаляются низкомолекулярные соединения (например, из полиамидных волокон), растворители (например, из полиакрилонитрильных волокон), отмываются кислоты, соли и другие вещества, увлекаемые волокнами из осадительной ванны (например, вискозными волокнами). Для придания волокнам таких свойств, как мягкость, повышенное скольжение, поверхностная склеиваемость одиночных волокон и др., их после промывки и очистки подвергают авиважной обработке или замасливанию. Затем волокна сушат на сушильных роликах, цилиндрах или в сушильных камерах. После отделки и сушки некоторые волокна химические подвергают дополнительной тепловой обработке - термофиксации (обычно в натянутом состоянии при 100-180°С), в результате которой стабилизируется форма пряжи, а также снижается последующая усадка как самих волокон, так и изделий из них во время сухих и мокрых обработок при повышенных температурах.

Лит.:

Характеристика химических волокон. Справочник. М., 1966; Роговин З.А., Основы химии и технологии производства химических волокон. 3 изд., т. 1-2, М.-Л., 1964; Технология производства химических волокон. М., 1965. В.В.Юркевич.

а также другие источники:

Большая Советская Энциклопедия;

Калмыкова Е.А., Лобацкая О.В. Материаловедение швейного производства: Учеб. Пособие,Мн.: Выш. шк., 2001412с.

Мальцева Е.П., Материаловедение швейного производства, - 2-е изд., перераб. и доп.М.: Легкая и пищевая промышленность, 1983,232.

Бузов Б.А., Модестова Т.А., Алыменкова Н.Д. Материаловедение швейного производства: Учеб. для вузов,4-е изд., перераб и доп.,М., Легпромбытиздат, 1986 – 424.

По химическому составу волокна подразделяются на органические и неорганические волокна.

Органические волокна образуются из полимеров, имеющих в своем составе атомы углерода, непосредственно соединённых друг с другом, или включающие наряду с углеродом атомы других элементов.

Неорганические волокна образуются из неорганических соединений (соединения из химических элементов кроме соединений углерода).

Для производства химических волокон из большого числа существующих полимеров применяют лишь волокнообразующие полимеры. Волокнообразующие полимеры состоят из гибких и длинных макромолекул, линейных или слаборазветвлённых, имеют достаточно высокую молекулярную массу и обладают способностью плавиться без разложения или растворяться в доступных растворителях.

Неорганическая пряжа изготавливается из соединений химических элементов (кроме соединений углерода), обычно из волокнообразующих полимеров. Могут использоваться асбест, металлы и даже стекло.

Это интересно. Тонковолокнистое строение природного асбеста позволяет делать из него пряжу для несгораемой ткани.

Разновидности и особенности производства

Благодаря разнообразию исходных материалов из неорганических волокон возможно создавать различные виды пряжи. Все они характеризуются высокой разрывной прочностью, отличной формоустойчивостью, несминаемостью, стойкостью к воздействию света, воды, температуры.

Широкое применение в текстильной промышленности получила металлическая, или металлизированная, пряжа. Она используется в сочетании с другими типами материала для придания изделиям блестящего, декоративного вида. Для производства такой пряжи применяют или алюнит – металлические нити, которые не тускнеют и не выцветают со временем. Материал изготавливается из алюминиевой фольги, покрытой полиэфирной пленкой, которая защищает от окисления. Для получения золотистого оттенка в сырье добавляют медь, а для добавления армирующих свойств – скручивают с капроновой нитью.


Для расширения ассортимента текстильных изделий неорганические волокна могут быть использованы в смеси с другими материалами, в том числе природного происхождения.

Историческая справка. Производство искусственной пряжи началось в конце XIX века. Первым видом неорганических волокон был нитратный шелк, полученный в 1890 году.

Свойства

Искусственное происхождение пряжи из неорганических волокон наделило ее массой преимуществ:

  • устойчивостью к ультрафиолету – пряжа не выгорает на ярком солнце, сохраняя первозданный цвет;
  • хорошей гигроскопичностью, то есть способностью впитывать и испарять влагу;
  • гигиеничностью – неорганические волокна не представляют интереса для моли, в них не размножаются микроорганизмы.

Все изделия из неорганических волокон обладают хорошей носкостью и сохраняют свой внешний вид на протяжении долгого времени.

Изделия из такой пряжи требуют бережной стирки. Вода не должна быть горячей, оптимально – не более 30–40 градусов. В противном случае вещь может дать усадку или потерять прочность.

Рекомендуется использовать жидкость для стирки соответствующего вида тканей и антистатик. Выжимать вещи из неорганических волокон путем скручивания нельзя: в мокром виде они теряют до 25 % прочности, что может привести к повреждениям.

Совет. Не используйте машинный отжим и не сушите изделие на батарее. Лучше расправить вещь на ровной горизонтальной поверхности, подложив полотенце, которое впитает влагу, или клеенку.

Что вяжут из неорганических волокон

Пряжа из неорганических волокон идеально подходит для вязания спицами или крючком. Гладкие блестящие нити не путаются и не расслаиваются, с ними легко справится даже новичок. Из этой пряжи вы можете связать или украсить металлизированной нитью:

  • изящное болеро;
  • модный топик;
  • красивое платье;
  • яркий головной убор;
  • кружевную салфетку;
  • пинетки или носочки для ребенка.

Неорганические волокна позволят создать красивую и нарядную вещь. Используйте фантазию, и у вас все получится!

Неорганические волокна в брендовых коллекциях

Чтобы связать качественное изделие, нужно выбрать подходящий материал. Пряжу с неорганическими волокнами предлагают Lana Grossa и другие производители. Они завоевали огромную популярность у вязальщиц всего мира. Яркие, красивые и оригинальные коллекции пряжи позволят вам выбрать идеальный материал для своей работы.

Для изготовления текстильных материалов используют самые разнообразные волокна, которые целесообразно классифицировать с учетом происхождения, химического состава и других признаков.

В зависимости от происхождения текстильные волокна делят на натуральные и химические. Химические в свою очередь подразделяются на искусственные и синтетические. Искусственные волокна получают из природных волокнообразующих полимеров, например, целлюлозы. К ним относятся вискозные, медно-аммиачные, ацетатные, белковые волокна. Синтетические волокна получают синтезом из низкомолекулярных соединений. Сырьем, как правило, служат продукты переработки нефти, каменного угля. К синтетическим волокнам относятся полиамидные, полиэфирные, полиакрилонитрильные, полиуретановые, поливинилспиртовые и др. Синтетические волокна получили широкое распространение, их баланс в общем производстве текстильных волокон все более увеличивается. Классификация текстильных органических волокон приведена на рис. 3.

Синтетические волокна и нити подразделяют также на гетероцепные и карбоцепные. Карбоцепными называют волокна и нити, которые получают из полимеров, имеющих в основной цепи макромолекул только атомы углерода (полиакрилонитрильные, поливинилхлоридные, поливинилспиртовые, полиолефиновые, углеродные).

  • абака, сизаль

Из целлюлозы:

    вискозное

    полинозное

    медно-аммиачное

    ацетатное, диацетатное

Белковые:

    зеиновое, казеиновое

    коллагеновые

Из натурального каучука:

    резиновые

    каучуковые

Гетероцепные:

    полиамидные (капрон, анид, энант)

    полиэфирные (лавсан, терилен, дакрон)

    полиуретановые (спандекс, ликра, вирен)

Карбоцепные:

    полиакрилонитрильные (нитрон, орлон, куртел)

    поливинилхлоридные (хлорин, совиден)

    поливинилспиртовые (винол)

    полиолефиновые (полиэтиленовые, полипропиленовые)

    из синтетического каучука (резиновые)

Рис. 3. Классификация органических текстильных волокон

Гетероцепные волокна образуются из полимеров, в основной молекулярной цепи которых кроме атомов углерода содержатся атомы других элементов – O,N,S(полиамидные, полиэфирные, полиуретановые).

Искуственные волокна в большинстве своем являются продуктами переработки целлюлозы (вискозные, полинозные, медно-аммиачные – гидратцеллюлозные; ацетатные, диацетаные – ацетилцеллюлозные). В небольщом объеме вырабатываются белковые искуственные волокна (зеиновые, казеиновые, коллагеновые) из фибриллярных белков молока, кожи, растений.

В приведенной классификации (см. рис. 3) волокна и нити относятся к органическим. Они в большинстве случаев используются для производства текстильных материалов бытового назначения. В органических волокнах макромолекулы главной цепи содержат атомы углерода, кислорода, серы, азота. Кроме органических существуют неорганические волокна, макромолекулы главной цепи которых содержат неорганические атомы (магний, алюминий, медь, серебро и др.). К неорганическим натуральным относятся асбестовые волокна, к химическим неорганическим – стекловолокна и металлические, изготовленные из стали, меди, бронзы, алюминия, никеля, золота, серебра различными способами (алюнит, люрекс) .

Текстильные товары

Текстильными товарами называются изделия, вырабатываемые из волокон и нитей. К ним относятся ткани, трикотажные полотна, нетканые и пленочные материалы, искусственные кожа и мех.

К факторам, формирующим потребительские свойства и качество текстильных товаров, относятся свойства, строение и качество текстильных волокон, пряжи и нитей, способ производства, структура материала и вид отделки.

Классификация, ассортимент и свойства волокон

Волокно - это гибкое прочное тело, длина которого в несколько раз превышает его поперечные размеры. Текстильные волокна используют для изготовления пряжи, ниток, тканей, трикотажных полотен, нетканых материалов, искусственной кожи и меха. В настоящее время при изготовлении текстильных изделий широко используются различные виды волокон, которые отличаются друг от друга по химическому составу, строению и свойствам.

Основными признаками классификации текстильных волокон являются способ получения (происхождение) и химический состав, определяющие основные физико-механические и химические свойства волокон, а также изделий, полученных из них. По происхождению все волокна подразделяются на натуральные и химические.

Натуральные волокна - волокна природного, т. е. растительного, животного или минерального происхождения.

Химические волокна- волокна, изготовленные в заводских условиях. Химические волокна бывают искусственные и синтетические. Искусственные волокна получают из природных высокомолекулярных соединений. Синтетические волокна получают из низкомолекулярных веществ в результате реакции полимеризации или поликонденсации, в основном из продуктов переработки нефти и каменного угля.

Ассортимент и свойства натуральных волокон и нитей

Природные высокомолекулярные соединения образуются в процессе развития и роста волокон. Основным веществом всех растительных волокон является целлюлоза, животных волокон - белок: у шерсти - кератин, у шелка - фиброин.

Хлопок получают из коробочек хлопчатника. Он представляет собой тонкие, короткие, мягкие пушистые волокна, покрывающие семена однолетних растений хлопчатника. Он является основным видом сырья текстильной промышленности. Хлопковое волокно представляет собой тонкостенную трубочку с каналом внутри. Для хлопка характерны относительно высокая прочность, теплостойкость (130-140°С), средняя гигроскопичность (18-20%) и малая доля упругой деформации, вследствие чего изделия из хлопка сильно сминаются. Хлопок отличается высокой устойчивостью к действию щелочей и незначительной - к истиранию. Последние открытия в генной инженерии позволили вырастить цветной хлопок.

Лен - лубяные волокна, длина которых составляет 20-30мм и более. Состоят из удлиненных цилиндрических клеток с довольно гладкими поверхностями. Элементарные волокна соединены между собой пектиновыми веществами в пучки по 10-50 шт. Гигроскопичность составляет от 12 до 30%. Льняное волокно плохо окрашивается из-за значительного содержания жировосковых веществ. По устойчивости к свету, высоким температурам и микробным разрушениям, а также по теплопроводности превосходит хлопок. Льняное волокно используют для изготовления технических (брезент, парусина,приводные ремни и др.), бытовых (бельевое полотно, костюмные и платьевые ткани) и тарных тканей.

Шерсть представляет собой волосяной покров овец, коз, верблюдов и других животных. Волокно шерсти состоит из чешуйчатого (внешнего), коркового и сердцевинного слоев. На долю белка кератина в химическом составе волокна приходится 90%. Основную массу шерсти для предприятий текстильной промышленности поставляет овцеводство. Овечья шерсть бывает четырех типов: пух, переходной волос, ость и мертвый волос. Пух - это очень тонкое, извитое, мягкое и прочное волокно, без сердцевинного слоя. Используется гагачий, гусиный, утиный, козий и кроличий пух. Переходный волос - это более толстое и грубое волокно, чем пух. Ость - это волокно более жесткое, чем переходный волос. Мертвый волос - очень толстое в поперечнике и грубое неизвитое волокно, покрытое крупными пластинчатыми чешуйками. Волокно могер (ангора) получают от ангорских коз. От кашмирских коз получают волокно кашмир, отличающееся мягкостью, нежностью на ощупь и преимущественно белым цветом. Особенностью шерсти является ее способность к свойлачиванию и высокая теплозащитность. Благодаря этим свойствам из шерсти вырабатывают ткани и трикотажные изделия зимнего ассортимента, а также сукна, драпы, фетр, войлочные и валяные изделия.

Шелк - это тонкие длинные нити, вырабатываемые шелкопрядом с помощью шелкоотделительных желез, и наматываемые им на кокон. Длина такой нити может составлять 500-1500 м. Самым высококачественным сортом шелка считается крученый шелк из длинных нитей, добываемых из середины кокона. Натуральный шелк широко используется при выработке швейных ниток, плательных тканей и штучных изделий (головных платков, косынок и шарфов). Особенно чувствителен шелк к действию ультрафиолетовых лучей, поэтому срок службы изделий из натурального шелка при солнечном освещении резко уменьшается.

Ассортимент и свойства химических волокон и нитей

Искусственные волокна

Вискозное волокно - самое натуральное из всех химических волокон, получаемое из природной целлюлозы. В зависимости от назначения вискозные волокна производят в виде нитей, а также штапельного (короткого) волокна с блестящей или матовой поверхностью. Волокно обладает хорошей гигроскопичностью (35-40%), светостойкостью и мягкостью. Недостатками вискозных волокон являются: большая потеря прочности в мокром состоянии, легкая сминаемость, недостаточная устойчивость к трению и значительная усадка при увлажнении. Эти недостатки устранены в модифицированных вискозных волокнах (полинозное, сиблон, мтилон), которым свойственны значительно более высокая прочность в сухом и мокром состоянии, большая износоустойчивость, меньшая усадка и повышенная несминаемость. Сиблон, по сравнению с обычным вискозным волокном, имеет меньшую степень усадки, повышенные показатели несминаемости, прочности в мокром состоянии и устойчивости к щелочам. Мтилан обладает антимикробными свойствами и используется в медицине в качестве нитей для временного скрепления хирургических швов. Вискозные волокна применяются при производстве одежных тканей, бельевого и верхнего трикотажа как в чистом виде, так и в смеси с другими волокнами и нитями.

Ацетатные и триацетатные волокна получают из хлопковой целлюлозы. Ткани из ацетатных волокон внешне очень похожи на натуральный шелк, обладают высокой упругостью, мягкостью, хорошей драпируемостью, малой сминаемостью, способностью пропускать ультрафиолетовые лучи. Гигроскопичность меньше, чем у вискозы, поэтому электризуются. Ткани из триацетатного волокна имеют малую сминаемость и усадку, но теряют прочность в мокром состоянии. Благодаря высокой упругости ткани хорошо сохраняют форму и отделки (гофре и плиссе). Высокая термоустойчивостьпозволяет гладить ткани из ацетатных и триацетатных волокон при 150-160°С.

Синтетические волокна

Синтетические волокна вырабатывают из полимерных материалов. Общими достоинствам синтетических волокон являются высокая прочность, устойчивость к истиранию и микроорганизмам, несминаемость. Основной недостаток - низкая гигроскопичность и электризуемость.

Полиамидные волокна - капрон, анид, энант, нейлон - отличаются высокой прочностью при растяжении, стойкостью к истиранию и многократному изгибу, обладают высокой химической стойкостью, морозоустойчивостью, устойчивостью к действию микроорганизмов. Основными их недостатками являются низкая гигроскопичность, термостойкость и светостойкость, высокая электризуемость. В результате быстрого "старения" они желтеют, становятся ломкими и жесткими. Полиамидные волокна и нити широко используются при выработке бытовых и технических изделий.

Полиэфирные волокна - лавсан - разрушаются при действии кислот и щелочей, гигроскопичность составляет 0,4%, поэтому для выработки тканей бытового назначения в чистом виде не применяется. Характеризуется высокой термостойкостью, малой усадкой, низкой теплопроводностью и большой упругостью. Недостатками волокна являются его повышенная жесткость, способность к образованию пиллинга на поверхности изделий, низкая гигроскопичность и сильная электризуемость. Лавсан широко применяется при выработке тканей, трикотажных и нетканых полотен бытового назначения в смеси с шерстью, хлопком, льном и вискозным волокном, что придает изделиям повышенную стойкость к истиранию, упругость и формоустойчивость. Кроме того, волокно используется в медицине для изготовления хирургических нитей и кровеносных сосудов.

Полиакрилонитрильные волокна - нитрон, дралон, долан, орлон - по внешнему виду напоминают шерсть. Изделия из него даже после стирки обладают высокой формоустойчивостью и несминаемостью. Устойчивы к воздействиям моли и микроорганизмов, обладают высокой стойкостью к ядерным излучениям. По стойкости к истиранию нитрон уступает полиамидным и полиэфирным волокнам. Применяется в производстве верхнего трикотажа, тканей, а также искусственного меха, ковровых изделий, одеял и тканей.

Поливинилспиртовые волокна - винол, ралон - обладают высокой прочностью и устойчивостью к истиранию и изгибу, действию света, микроорганизмов, пота, различных реагентов (кислот, щелочей, окислителей, нефтепродуктов). Винол отличается от всех синтетических волокон повышенной гигроскопичностью, что дает возможность использовать его при выработке тканей для белья и верхней одежды. Штапельные (короткие) поливинилспиртовые волокна применяют в чистом виде или в смеси с хлопком, шерстью, льном или химическими волокнами для получения тканей, трикотажа, фетра, войлока, парусины, брезентов, фильтровальных материалов.

Полиуретановые волокна - спандекс, лайкра - обладают высокой эластичностью: могут многократно растягиваться и увеличиваться по длине в 5-8 раз. Имеют высокую упругость, прочность, несминаемость, устойчивость к истиранию (в 20 раз больше, чем у резиновой нити), к светопогоде и химическим реагентам, но низкую гигроскопичность и термостойкость: при температуре более 150°С желтеют и становятся жесткими. С использованием этих волокон вырабатывают эластичные ткани и трикотажные полотна для верхней одежды, и предметов женского туалета, спортивной одежды, а также чулочно-носочные изделия.

Поливинилхлоридные волокна - хлорин - отличаются устойчивостью к износу и действию химических реагентов, но в то же время мало поглощают влагу, недостаточно устойчивы к свету и высоким температурам: при 90-100°С волокна "садятся" и размягчаются. Используют в производстве фильтровальных тканей, рыболовных сетей, трикотажного лечебного белья.

Полиолефиновые волокна получают из полиэтилена и полипропилена. Они дешевле и легче других синтетических волокон, обладают высокими показателями прочности, устойчивости к химическим реагентам, микроорганизмам, износу и многократным изгибам. Недостатки: низкая гигроскопичность (0,02%), значительная электризуемость, неустойчивость к высоким температурам (при 50-60°С - значительная усадка). В основном используют для изготовления технических материалов, ковровых изделий, плащевых тканей и т. д.

Неорганические нити и волокна

Стеклянные волокна получают из силикатного стекла методом плавления и вытягивания. Они обладают негорючестью, стойкостью к коррозии, щелочам и кислотам, высокой прочностью, атмосферо- и звукоизоляционными свойствами. Используются для производства фильтров, огнестойкой внутренней обшивки самолетов и судов, театральных занавесов.

Металлические волокна получают из алюминия, меди, никеля, золота, серебра, платины, латуни, бронзы путем волочения, резки, строгания и литья. Вырабатывают алюнит, люрекс и мишуру. В смеси с другими волокнами и нитями применяют для выработки и отделки одежных, мебельно-декоративных тканей и текстильной галантереи.

Поделиться: