Вес турбины пт 80 100 130 13. По эксплуатации паровой турбины. Описание и техническая характеристика установки для

Комплексная модернизация паровой турбины ПТ-80/100-130/13

Целью модернизации является увеличение электрической и теплофикационной мощности турбины с повышением экономичности турбоустановки. Модернизация в объеме основной опции заключается в установке сотовых надбандажных уплотнений ЦВД и замене проточной части среднего давления с изготовлением нового ротора НД с целью увеличения пропускной способности ЧСД до 383 т/ч. При этом сохраняется диапазон регулирования давления в производственном отборе, максимальный расход пара в конденсатор не изменяется.
Заменяемые узлы при модернизации турбоагрегата в объёме основной опции:

  • Установка сотовых надбандажных уплотнений 1-17 ступеней ЦВД;
  • Направляющий аппарат ЦСНД;
  • Седла РК ЧСД большего пропускного сечения с доработкой паровых коробок верхней половины корпуса ЧСД под установку новых крышек;
  • Регулирующие клапаны СД и кулачково-распределительное устройство;
  • Диафрагмы 19-27 ступеней ЦСНД, укомплектованные надбандажными сотовыми уплотнениями и уплотнительными кольцами с витыми пружинами;
  • Ротор СНД с установленными новыми рабочими лопатками 18-27 ступеней ЦСНД с цельнофрезерованными бандажами;
  • Обоймы диафрагм №1, 2, 3;
  • Обойма передних концевых уплотнений и уплотнительные кольца с витыми пружинами;
  • Насадные диски 28, 29, 30 ступеней сохраняются в соответствии с существующей конструкцией, что позволяет сократить затраты на проведение модернизации (при условии использования старых насадных дисков).
Кроме того, в объёме основной опции предусматривается установка в козырьки диафрагм сотовых надбандажных уплотнений 1-17 ступеней ЦВД с приваркой уплотняющих усов на бандажи рабочих лопаток.

В результате модернизации по основной опции достигается следующее:

  1. Увеличение максимальной электрической мощности турбины до 110 МВт и мощности теплофикационного отбора до 168,1 Гкал/ч, за счет сокращения промышленного отбора.
  2. Обеспечение надёжной и маневренной работы турбоустановки на всех эксплуатационных режимах работы, в том числе при минимально возможных давлениях в промышленном и теплофикационном отборах.
  3. Повышение показателей экономичности турбоустановки;
  4. Обеспечение стабильности достигнутых технико-экономических показателей в течение межремонтного периода.

Эффект от модернизации в объеме основного предложения:

Режимы турбоагрегата Электрическая мощность, МВт Расход пара на теплофикацию, т/ч Расход пара на производство, т/ч

Конденсационный

Номинальный

Максимальной мощности

С максимальным
теплофикационным отбором

Увеличение КПД ЧСД

Увеличение КПД ЦВД

Дополнительные предложения (опции) по модернизации

  • Модернизация обоймы регулирующей ступени ЦВД с установкой надбандажных сотовых уплотнений
  • Установка диафрагм последних ступеней с тангенциальным навалом
  • Высокогерметичные уплотнения штоков регулирующих клапанов ЦВД

Эффект от модернизации по дополнительным опциям


п/п

Наименование

Эффект

Модернизация обоймы регулирующей ступени ЦВД с установкой надбандажных сотовых уплотнений

Увеличение мощности на 0,21-0,24 МВт
- повышение КПД ЦВД на 0,3-0,4%
- повышение надежности работы


остановах турбин

Установка диафрагм последних ступеней с тангенциальным навалом

Конденсационный режим:
- увеличение мощности на 0,76 МВт
- повышение КПД ЦСНД 2,1%

Уплотнение поворотной диафрагмы

Повышение экономичности турбоустановки при работе в режиме с полностью закрытой поворотной диафрагмой 7 Гкал/час

Замена надбандажных уплотнений ЦВД и ЦСД на сотовые

Повышение КПД цилиндров (ЦВД на 1,2-1,4%, ЦСНД на 1%);
- увеличение мощности (ЦВД на 0,6-0,9 МВт, ЦСНД на 0,2 МВт);
- улучшение надёжности работы турбоагрегатов;
- обеспечение стабильности достигнутых технико-экономических
показателей в течение межремонтного периода;
- обеспечение надёжной, без снижения экономичности работы
надбандажных уплотнений ЦВД и ЦСД на переходных режимах,
в т.ч. при аварийных остановах турбин.

Замена регулирующих клапанов ЦВД

Увеличение мощности на 0,02-0,11 МВт
- повышение КПД ЦВД на 0,12%
- повышение надежности работы

Установка сотовых концевых уплотнений ЦНД

Устранение присосов воздуха через концевые уплотнения
- повышение надежности работы турбины
- повышение экономичности турбины
- стабильность достигнутых технико-экономических показателей
в течение всего межремонтного периода
- надёжная, без снижения экономичности работа концевых
уплотнений ЦНД в переходных режимах, в т.ч. при аварийных
остановах турбин

Введение

Для крупных заводов всех отраслей промышленности, имеющих большое теплопотребление, оптимальной является система энергоснабжения от районной или промышленной ТЭЦ.

Процесс производства электроэнергии на ТЭЦ характеризуется повышенной тепловой экономичностью и более высокими энергетическими показателями по сравнению с конденсационными электростанциями. Это объясняется тем, что отработавшее тепло турбины, отведенное в холодный источник (приемника тепла у внешнего потребителя), используется в нем.

В работе произведен расчет принципиальной тепловой схемы электростанции на базе производственной теплофикационной турбины ПТ-80/100-130/13, работающей на расчетном режиме при наружной температуре воздуха.

Задачей расчета тепловой схемы является определение параметров, расходов и направлений потоков рабочего тела в агрегатах и узлах, а также общего расхода пара, электрической мощности и показателей тепловой экономичности станции.

Описание принципиальной тепловой схемы турбоустановки ПТ-80/100-130/13

Энергоблок электрической мощностью 80 МВт состоит из барабанного котла высокого давления Е-320/140, турбины ПТ-80/100-130/13, генератора и вспомогательного оборудования.

Энергоблок имеет семь отборов. В турбоустановке можно осуществлять двухступенчатый подогрев сетевой воды. Имеется основной и пиковый бойлера, а также ПВК, который включается если бойлера не могут обеспечить требуемого нагрева сетевой воды.

Свежий пар из котла с давлением 12,8 МПа и температурой 555 0 С поступает в ЦВД турбины и, отработав, направляется в ЧСД турбины, а затем в ЧНД. Отработав пар поступает из ЧНД в конденсатор.

В энергоблоке для регенерации предусмотрены три подогревателя высокого давления (ПВД) и четыре низкого (ПНД). Нумерация подогревателей идет с хвоста турбоагрегата. Конденсат греющего пара ПВД-7 каскадно сливается в ПВД-6, в ПВД-5 и затем в деаэратор (6 ата). Слив конденсата из ПНД4, ПНД3 и ПНД2 также осуществляется каскадно в ПНД1. Затем из ПНД1 конденсат греющего пара, направляется в СМ1(см. ПрТС2).

Основной конденсат и питательная вода подогреваются последовательно в ПЭ, СХ и ПС, в четырех подогревателях низкого давления (ПНД), в деаэраторе 0,6 МПа и в трех подогревателях высокого давления (ПВД). Отпуск пара на эти подогреватели осуществляется из трех регулируемых и четырех нерегулируемых отборов пара турбины.

На блоке для подогрева воды в теплосети имеется бойлерная установка, состоящая из нижнего(ПСГ-1) и верхнего(ПСГ-2) сетевых подогревателей, питающихся соответственно паром из 6-го и 7-го отбора, и ПВК. Конденсат из верхнего и нижнего сетевых подогревателей подается сливными насосами в смесители СМ1 между ПНД1 и ПНД2 и СМ2 между подогревателями ПНД2 и ПНД3.

Температура подогрева питательной воды лежит в пределах (235-247) 0 С и зависит о начального давления свежего пара, величины недогрева в ПВД7.

Первый отбор пара (из ЦВД) идет на нагрев питательной воды в ПВД-7, второй отбор (из ЦВД) - в ПВД-6, третий (из ЦВД) - в ПВД-5, Д6ата, на производство; четвертый (из ЧСД) - в ПНД-4, пятый (из ЧСД) - в ПНД-3, шестой (из ЧСД) - в ПНД-2, деаэратор (1,2 ата), в ПСГ2, в ПСВ; седьмой (из ЧНД) - в ПНД-1 и в ПСГ1.

Для восполнения потерь в схеме предусмотрен забор сырой воды. Сырая вода подогревается в подогревателе сырой воды (ПСВ) до температуры 35 о С, затем, пройдя химическую очистку, поступает в деаэратор 1,2 ата. Для обеспечения подогрева и деаэрации добавочной воды используется теплота пара из шестого отбора.

Пар из штоков уплотнений в количестве D шт = 0,003D 0 идет в деаэратор (6 ата). Пар из крайних камер уплотнений направляется в СХ, из средних камер уплотнения - в ПС.

Продувка котла - двухступенчатая. Пар с расширителя 1-ой ступени идет в деаэратор(6 ата), с расширителя 2-ой ступени в деаэратор(1,2 ата). Вода с расширителя 2-ой ступени подается в магистраль сетевой воды, для частичного восполнения потерь сети.

Рисунок 1. Принципиальная тепловая схема ТЭЦ на базе ТУ ПТ-80/100-130/13

  • Tutorial

Предисловие к первой части

Моделирование паровых турбин — повседневная задача сотен людей в нашей стране. Вместо слова модель принято говорить расходная характеристика . Расходные характеристики паровых турбин используют при решении таких задач, как вычисление удельного расхода условного топлива на электроэнергию и тепло, производимые ТЭЦ; оптимизация работы ТЭЦ; планирование и ведение режимов ТЭЦ.


Мною разработана новая расходная характеристика паровой турбины — линеаризованная расходная характеристика паровой турбины. Разработанная расходная характеристика удобна и эффективна в решении указанных задач. Однако на текущий момент она описана лишь в двух научных работах:

  1. Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России ;
  2. Вычислительные методы определения удельных расходов условного топлива ТЭЦ на отпущенную электрическую и тепловую энергию в режиме комбинированной выработки .

И сейчас в своем блоге мне бы хотелось:

  • во-первых, простым и доступным языком ответить на основные вопросы о новой расходной характеристике (см. Линеаризованная расходная характеристика паровой турбины. Часть 1. Основные вопросы);
  • во-вторых, предоставить пример построения новой расходной характеристики, который поможет разобраться и в методе построения, и в свойствах характеристики (см. ниже);
  • в-третьих, опровергнуть два известных утверждения относительно режимов работы паровой турбины (см. Линеаризованная расходная характеристика паровой турбины. Часть 3. Развенчиваем мифы о работе паровой турбины).

1. Исходные данные

Исходными данными для построения линеаризованной расходной характеристики могут быть

  1. фактические значения мощностей Q 0 , N, Q п, Q т измеренные в процессе функционирования паровой турбины,
  2. номограммы q т брутто из нормативно-технической документации.
Конечно, фактические мгновенные значения Q 0 , N, Q п, Q т являются идеальными исходными данными. Сбор таких данных трудоемок.

В тех случаях, когда фактические значения Q 0 , N, Q п, Q т недоступны, можно обработать номограммы q т брутто. Они, в свою очередь, были получены на основании измерений. Подробнее об испытаниях турбин читайте в Горнштейн В.М. и др. Методы оптимизации режимов энергосистем .

2. Алгоритм построения линеаризованной расходной характеристики

Алгоритм построения состоит из трех шагов.

  1. Перевод номограмм или результатов измерений в табличный вид.
  2. Линеаризация расходной характеристики паровой турбины.
  3. Определение границ регулировочного диапазона работы паровой турбины.

При работе с номограммами q т брутто первый шаг осуществляется быстро. Такую работу называют оцифровкой (digitizing). Оцифровка 9 номограмм для текущего примера заняла у меня около 40 минут.


Второй и третий шаг требуют применения математических пакетов. Я люблю и много лет использую MATLAB. Мой пример построения линеаризованной расходной характеристики выполнен именно в нем. Пример можно скачать по ссылке , запустить и самостоятельно разобраться в методе построения линеаризованной расходной характеристики.


Расходная характеристика для рассматриваемой турбины строилась для следующих фиксированных значений параметров режима:

  • одноступенчатый режим работы,
  • давление пара среднего давления = 13 кгс/см2,
  • давление пара низкого давления = 1 кгс/см2.

1) Номограммы удельного расхода q т брутто на выработку электроэнергии (отмеченные красные точки оцифрованы — перенесены в таблицу):

  • PT80_qt_Qm_eq_0_digit.png,
  • PT80_qt_Qm_eq_100_digit.png,
  • PT80_qt_Qm_eq_120_digit.png,
  • PT80_qt_Qm_eq_140_digit.png,
  • PT80_qt_Qm_eq_150_digit.png,
  • PT80_qt_Qm_eq_20_digit.png,
  • PT80_qt_Qm_eq_40_digit.png,
  • PT80_qt_Qm_eq_60_digit.png,
  • PT80_qt_Qm_eq_80_digit.png.

2) Результат оцифровки (каждому файлу csv соответствует файл png):

  • PT-80_Qm_eq_0.csv,
  • PT-80_Qm_eq_100.csv,
  • PT-80_Qm_eq_120.csv,
  • PT-80_Qm_eq_140.csv,
  • PT-80_Qm_eq_150.csv,
  • PT-80_Qm_eq_20.csv,
  • PT-80_Qm_eq_40.csv,
  • PT-80_Qm_eq_60.csv,
  • PT-80_Qm_eq_80.csv.

3) Скрипт MATLAB с расчетами и построением графиков:

  • PT_80_linear_characteristic_curve.m

4) Результат оцифровки номограмм и результат построения линеаризованной расходной характеристики в табличном виде:

  • PT_80_linear_characteristic_curve.xlsx.

Шаг 1. Перевод номограмм или результатов измерений в табличный вид

1. Обработка исходных данных

Исходными данными для нашего примера являются номограммы q т брутто.


Для перевода в цифровой вид множества номограмм нужен специальный инструмент. Я многократно использовала web-приложение для этих целей. Приложение просто, удобно, однако не имеет достаточной гибкости для автоматизации процесса. Часть работы приходится делать вручную.


На данном шаге важно оцифровать крайние точки номограмм, которые задают границы регулировочного диапазона работы паровой турбины .


Работа состояла в том, чтобы в каждом файле png при помощи приложения отметить точки расходной характеристики, скачать полученный csv и собрать все данные в одной таблице. Результат оцифровки можно найти в файле PT-80-linear-characteristic-curve.xlsx, лист «PT-80», таблица «Исходные данные».

2. Приведение единиц измерения к единицам мощности

$$display$$\begin{equation} Q_0 = \frac {q_T \cdot N} {1000} + Q_П + Q_Т \qquad (1) \end{equation}$$display$$


и приводим все исходные величины к МВт. Расчеты реализованы средствами MS Excel.

Полученная таблица «Исходные данные (ед. мощности)» является результатом первого шага алгоритма.

Шаг 2. Линеаризация расходной характеристики паровой турбины

1. Проверка работы MATLAB

На данном шаге требуется установить и открыть MATLAB версии не ниже 7.3 (это старая версия, текущая 8.0). В MATLAB открыть файл PT_80_linear_characteristic_curve.m, запустить его и убедиться в работоспособности. Все работает корректно, если по итогам запуска скрипта в командной строке вы увидели следующее сообщение:


Значения считаны из файла PT_80_linear_characteristic_curve.xlsx за 1 сек Коэффициенты: a(N) = 2.317, a(Qп) = 0.621, a(Qт) = 0.255, a0 = 33.874 Средняя ошибка = 0.006, (0.57%) Число граничных точек регулировочного диапазона = 37

Если у вас возникли ошибки, то разберитесь самостоятельно, как их исправить.

2. Вычисления

Все вычисления реализованы в файле PT_80_linear_characteristic_curve.m. Рассмотрим его по частям.


1) Укажем название исходного файла, лист, диапазон ячеек, содержащий полученную на предыдущем шаге таблицу «Исходные данные (ед. мощности)».


XLSFileName = "PT_80_linear_characteristic_curve.xlsx"; XLSSheetName = "PT-80"; XLSRange = "F3:I334";

2) Считаем исходные данные в MATLAB.


sourceData = xlsread(XLSFileName, XLSSheetName, XLSRange); N = sourceData(:,1); Qm = sourceData(:,2); Ql = sourceData(:,3); Q0 = sourceData(:,4); fprintf("Значения считаны из файла %s за %1.0f сек\n", XLSFileName, toc);

Используем переменную Qm для расхода пара среднего давления Q п, индекс m от middle — средний; аналогично используем переменную Ql для расхода пара низкого давления Q n , индекс l от low — низкий.


3) Определим коэффициенты α i .


Вспомним общую формулу расходной характеристики

$$display$$\begin{equation} Q_0 = f(N, Q_П, Q_Т) \qquad (2) \end{equation}$$display$$

и укажем независимые (x_digit) и зависимые (y_digit) переменные.


x_digit = ; % электроэнергия N, промышленный пар Qп, теплофикационный пар Qт, единичный вектор y_digit = Q0; % расход острого пара Q0

Если вам непонятно, зачем в матрице x_digit единичный вектор (последний столбец), то читайте материалы по линейной регрессии. На тему регрессионного анализа рекомендую книгу Draper N., Smith H. Applied regression analysis . New York: Wiley, In press, 1981. 693 p. (есть на русском языке).


Уравнение линеаризованной расходной характеристики паровой турбины


$$display$$\begin{equation} Q_0 = \alpha_N \cdot N + \alpha_П \cdot Q_П + \alpha_Т \cdot Q_Т + \alpha_0 \qquad (3) \end{equation}$$display$$

является моделью множественной линейной регрессии. Коэффициенты α i определим при помощи «большого блага цивилизации» — метода наименьших квадратов. Отдельно отмечу, что метод наименьших квадратов разработан Гауссом в 1795 году.


В MATLAB это делается одной строчкой.


A = regress(y_digit, x_digit); fprintf("Коэффициенты: a(N) = %4.3f, a(Qп) = %4.3f, a(Qт) = %4.3f, a0 = %4.3f\n",... A);

Переменная A содержит искомые коэффициенты (см. сообщение в командной строке MATLAB).


Таким образом, полученная линеаризованная расходная характеристика паровой турбины ПТ-80 имеет вид


$$display$$\begin{equation} Q_0 = 2.317 \cdot N + 0.621 \cdot Q_П + 0.255 \cdot Q_Т + 33.874 \qquad (4) \end{equation}$$display$$


4) Оценим ошибку линеаризации полученной расходной характеристики.


y_model = x_digit * A; err = abs(y_model - y_digit) ./ y_digit; fprintf("Средняя ошибка = %1.3f, (%4.2f%%)\n\n", mean(err), mean(err)*100);

Ошибка линеаризации равна 0,57% (см. сообщение в командной строке MATLAB).


Для оценки удобства использования линеаризованной расходной характеристики паровой турбины решим задачу вычисления расхода пара высокого давления Q 0 при известных значениях нагрузки N, Q п, Q т.


Пусть N = 82.3 МВт, Q п = 55.5 МВт, Q т = 62.4 МВт, тогда


$$display$$\begin{equation} Q_0 = 2.317 \cdot 82,3 + 0.621 \cdot 55,5 + 0.255 \cdot 62,4 + 33.874 = 274,9 \qquad (5) \end{equation}$$display$$


Напомню, что средняя ошибка вычислений составляет 0,57%.


Вернемся к вопросу, чем линеаризованная расходная характеристика паровой турбины принципиально удобнее номограмм удельного расхода q т брутто на выработку электроэнергии? Чтобы понять принципиальную разницу на практике, решите две задачи.

  1. Вычислите величину Q 0 с указанной точностью с использованием номограмм и ваших глаз.
  2. Автоматизируйте процесс расчета Q 0 с использованием номограмм.

Очевидно, что в первой задаче определение значений q т брутто на глаз чревато грубыми ошибками.


Вторая задача громоздка для автоматизации. Поскольку значения q т брутто нелинейны , то для такой автоматизации число оцифрованных точек в десятки раз больше, чем в текущем примере. Одной оцифровки недостаточно, также необходимо реализовать алгоритм интерполяции (нахождения значений между точками) нелинейных значений брутто.

Шаг 3. Определение границ регулировочного диапазона работы паровой турбины

1. Вычисления

Для вычисления регулировочного диапазона воспользуемся другим «благом цивилизации» — методом выпуклой оболочки, convex hull.


В MATLAB это делается следующим образом.


indexCH = convhull(N, Qm, Ql, "simplify", true); index = unique(indexCH); regRange = ; regRangeQ0 = * A; fprintf("Число граничных точек регулировочного диапазона = %d\n\n", size(index,1));

Метод convhull() определяет граничные точки регулировочного диапазона , заданного значениями переменных N, Qm, Ql. Переменная indexCH содержит вершины треугольников, построенных при помощи триангуляции Делоне. Переменная regRange содержит граничные точки регулировочного диапазона; переменная regRangeQ0 — значения расхода пара высокого давления для граничных точек регулировочного диапазона.


Результат вычислений можно найти в файле PT_80_linear_characteristic_curve.xlsx, лист «PT-80-result», таблица «Границы регулировочного диапазона».


Линеаризованная расходная характеристика построена. Она представляет собой формулу и 37 точек, задающих границы (оболочку) регулировочного диапазона в соответствующей таблице.

2. Проверка

При автоматизации процессов расчета Q 0 необходимо проверять, находится ли некоторая точка со значениями N, Q п, Q т внутри регулировочного диапазона или за его пределами (режим технически не реализуем). В MATLAB это можно делать следующим образом.


Задаем значения N, Q п, Q т, которые мы хотим проверить.


n = 75; qm = 120; ql = 50;

Проверяем.


in1 = inpolygon(n, qm, regRange(:,1),regRange(:,2)); in2 = inpolygon(qm, ql, regRange(:,2),regRange(:,3)); in = in1 && in2; if in fprintf("Точка N = %3.2f МВт, Qп = %3.2f МВт, Qт = %3.2f МВт находится внутри регулировочного диапазона\n", n, qm, ql); else fprintf("Точка N = %3.2f МВт, Qп = %3.2f МВт, Qт = %3.2f МВт находится снаружи регулировочного диапазона (технически недостижима)\n", n, qm, ql); end

Проверка осуществляется в два шага:

  • переменная in1 показывает, попали ли значения N, Q п внутрь проекции оболочки на оси N, Q п;
  • аналогично переменная in2 показывает, попали ли значения Q п, Q т внутрь проекции оболочки на оси Q п, Q т.

Если обе переменные равны 1 (true), то искомая точка находится внутри оболочки, задающей регулировочный диапазон работы паровой турбины.

Иллюстрация полученной линеаризованной расходной характеристики паровой турбины

Наиболее «щедрые блага цивилизации» нам достались в части иллюстрации результатов расчетов.


Предварительно нужно сказать, что пространство, в котором мы строим графики, т. е. пространство с осями x – N, y – Q т, z – Q 0 , w – Q п, называем режимным пространством (см. Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России

). Каждая точка этого пространства определяет некоторый режим работы паровой турбины. Режим может быть

  • технически реализуемым, если точка находится внутри оболочки, задающей регулировочный диапазон,
  • технически не реализуемым, если точка находится за пределами этой оболочки.

Если говорить о конденсационном режиме работы паровой турбины (Q п = 0, Q т = 0), то линеаризованная расходная характеристика представляет собой отрезок прямой . Если говорить о турбине Т-типа, то линеаризованная расходная характеристика представляет собой плоский многоугольник в трехмерном режимном пространстве с осями x – N, y – Q т, z – Q 0 , который легко визуализировать. Для турбины ПТ-типа визуализация наиболее сложная, поскольку линеаризованная расходная характеристика такой турбины представляет плоский многоугольник в четырехмерном пространстве (пояснения и примеры см. в Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России, раздел Линеаризация расходной характеристики турбины ).

1. Иллюстрация полученной линеаризованной расходной характеристики паровой турбины

Построим значения таблицы «Исходные данные (ед. мощности)» в режимном пространстве.



Рис. 3. Исходные точки расходной характеристики в режимном пространстве с осями x – N, y – Q т, z – Q 0


Поскольку построить зависимость в четырехмерном пространстве мы не можем, до такого блага цивилизации еще не дошли, оперируем значениями Q п следующим образом: исключаем их (рис. 3), зафиксируем (рис. 4) (см. код построения графиков в MATLAB).


Зафиксируем значение Q п = 40 МВт и построим исходные точки и линеаризованную расходную характеристику.




Рис. 4. Исходные точки расходной характеристики (синие точки), линеаризованная расходная характеристика (зеленый плоский многоугольник)


Вернемся к полученной нами формуле линеаризованной расходной характеристики (4). Если зафиксировать Q п = 40 МВт МВт, то формула будет иметь вид


$$display$$\begin{equation} Q_0 = 2.317 \cdot N + 0.255 \cdot Q_Т + 58.714 \qquad (6) \end{equation}$$display$$


Данная модель задает плоский многоугольник в трехмерном пространстве с осями x – N, y – Q т, z – Q 0 по аналогии с турбиной Т-типа (его мы и видим на рис. 4).


Много лет назад, когда разрабатывали номограммы q т брутто, на этапе анализа исходных данных совершили принципиальную ошибку. Вместо применения метода наименьших квадратов и построения линеаризованной расходной характеристики паровой турбины по неведомой причине сделали примитивный расчет:


$$display$$\begin{equation} Q_0(N) = Q_э = Q_0 - Q_Т - Q_П \qquad (7) \end{equation}$$display$$


Вычли из расхода пара высокого давления Q 0 расходы паров Q т, Q п и отнесли полученную разницу Q 0 (N) = Q э на выработку электроэнергии. Полученную величину Q 0 (N) = Q э поделили на N и перевели в ккал/кВт·ч, получив удельный расход q т брутто. Данный расчет не соответствует законам термодинамики.


Дорогие читатели, может, именно вы знаете неведомую причину? Поделитесь ею!

2. Иллюстрация регулировочного диапазона паровой турбины

Посмотрим оболочку регулировочного диапазона в режимном пространстве. Исходные точки для его построения представлены на рис. 5. Это те же самые точки, которые мы видим на рис. 3, однако теперь исключен параметр Q 0 .




Рис. 5. Исходные точки расходной характеристики в режимном пространстве с осями x – N, y – Q п, z – Q т


Множество точек на рис. 5 является выпуклым. Применив функцию convexhull(), мы определили точки, которые задают внешнюю оболочку этого множества.


Триангуляция Делоне (набор связанных треугольников) позволяет нам построить оболочку регулировочного диапазона. Вершины треугольников являются граничными значениями регулировочного диапазона рассматриваемой нами паровой турбины ПТ-80.




Рис. 6. Оболочка регулировочного диапазона, представленная множеством треугольников


Когда мы делали проверку некоторой точки на предмет попадания внутрь регулировочного диапазона, то мы проверяли, лежит ли эта точка внутри или снаружи полученной оболочки.


Все представленные выше графики построены средствами MATLAB (см. PT_80_linear_characteristic_curve.m).

Перспективные задачи, связанные с анализом работы паровой турбины при помощи линеаризованной расходной характеристики

Если вы делаете диплом или диссертацию, то могу предложить вам несколько задач, научную новизну которых вы легко сможете доказать всему миру. Кроме того, вы сделаете отличную и полезную работу.

Задача 1

Покажите, как изменится плоский многоугольник при изменении давления пара низкого давления Q т.

Задача 2

Покажите, как изменится плоский многоугольник при изменении давления в конденсаторе.

Задача 3

Проверьте, можно ли представить коэффициенты линеаризованной расходной характеристики в виде функций дополнительных параметров режима, а именно:


$$display$$\begin{equation} \alpha_N = f(p_{0},...); \\ \alpha_П = f(p_{П},...); \\ \alpha_Т = f(p_{Т},...); \\ \alpha_0 = f(p_{2},...). \end{equation}$$display$$

Здесь p 0 — давление пара высокого давления, p п — давление пара среднего давления, p т — давление пара низкого давления, p 2 — давление отработанного пара в конденсаторе, все единицы измерения кгс/см2.


Обоснуйте результат.

Ссылки

Чучуева И.А., Инкина Н.Е. Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России // Наука и образование: научное издание МГТУ им. Н.Э. Баумана. 2015. № 8. С. 195-238.

  • Раздел 1. Содержательная постановка задачи оптимизации работы ТЭЦ в России
  • Раздел 2. Линеаризация расходной характеристики турбины
Добавить метки

Теплофикационная паровая турбина ПТ-80/100-130/13 производственного объеди­нения турбостроения «Ленинградский металлический завод» (НОГ ЛМЗ) с промышлен­ным и отопительными отборами пара номинальной мощностью 80 МВт, максимальной 100 МВт с начальным давлением пара 12,8 МПа предназначена для непосредственного привода электрического генератора ТВФ-120-2 с частотой вращения 50 Гц и отпуска теп­ла для нужд производства и отопления.

При заказе турбины, а также в другой документации, где ее следует обозначать «Турбина паровая 1ГГ-80/100-130/13 ТУ 108-948-80».

Турбина ПТ-80/100-130/13 соответствует требованиям ГОСТ 3618-85, ГОСТ 24278-85 и ГОСТ 26948-86.

Турбина имеет следующие регулируемые отборы пара: производственный с абсо­лютным давлением (1,275±0,29) МПа и два отопительных отбора: верхний с абсолют­ным давлением в пределах 0,049-0,245 МПа и нижний с давлением в пределах 0,029-0,098 МПа.

Регулирование давления отопительного отбора осуществляется с помощью одной регулирующей диафрагмы, установленной в камере верхнего отопительного от­бора. Регулируемое давление в отопительных отборах поддерживается: в верхнем отбо­ре — при включенных обоих отопительных отборах, в нижнем отборе — при включенном одном нижнем отопительном отборе. Сетевая вода через сетевые подогреватели нижней и верхней ступеней подогрева пропускается последовательно и в одинаковом количест­ве. Расход воды, проходящей через сетевые подогреватели, контролируется.

Номинальные значения основных параметров турбины ПТ-80/100-130/13

Параметр ПТ-8О/100-130/13
1. Мощность, МВт
номинальная 80
максимальная 100
2. Начальные параметры пара:
давление, МПа 12.8
температура. °С 555
284 (78.88)
4. Расход отбираемого пара на производств. нужды, т/ч
номинальный 185
максимальный 300
5. Давление производственного отбора, МПа 1.28
6. Максимальный расход свежего пара, т/ч 470
7. Пределы изменения давления пара в регулируемых отопительных отборах пара, МПа
в верхнем 0.049-0.245
в нижнем 0.029-0.098
8. Температура воды, °С
питательной 249
охлаждающей 20
9. Расход охлаждающей воды, т/ч 8000
10. Давление пара в конденсаторе, кПа 2.84

При номинальных параметрах свежею пара, расходе охлаждающей воды 8000 м3/ч, температуре охлаждающей воды 20 °С, полностью включенной регенерации, количестве конденсата, подогреваемого в ПВД, равном 100% расхода пара через турби­ну, при работе турбоустановки с деаэратором 0,59 МПа, со ступенчатым подогревом се­тевой воды, при полном использовании пропускной способности турбины и минималь­ном пропуске пара в конденсатор могут быть взяты следующие величины отборов:

номинальные величины регулируемых отборов при мощности 80 МВт;

— производственный отбор — 185 т/ч при абсолютном давлении 1,275 МПа;

— суммарный отопительный отбор — 285 ГДж/ч (132 т/ч) при абсолютных давлениях: в верхнем отборе — 0,088 МПа и в нижнем отборе — 0,034 МПа;

— максимальная величина производственного отбора при абсолютном давлении в камере отбора 1,275 МПа составляет 300 т/ч. При этой величине производственного от­бора и отсутствии отопительных отборов мощность турбины составляет -70 МВт. При номинальной мощности 80 МВт и отсутствии отопительных отборов максимальный про­изводственный отбор составит -250 т/ч;

— максимальная суммарная величина отопительных отборов равна 420 ГДж/ч (200 т/ч); при этой величине отопительных отборов и отсутствии производственного от­бора мощность турбины составляет около 75 МВт; при номинальной мощности 80 МВт и отсутствии производственного отбора максимальные отопительные отборы составят око­ло 250 ГДж/ч (-120 т/ч).

— максимальная мощность турбины при выключенных производственном и отопи­тельных отборах, при расходе охлаждающей воды 8000 м /ч с температурой 20 °С, пол­ностью включенной регенерации составит 80 МВт. Максимальная мощность турбины 100 МВт. получаемая при определенных сочетаниях производственного и отопительного отборов, зависит от величины отборов и определяется диафрагмой режимов.

Предусматривается возможность работы турбоустановки с пропуском подпиточной и сетевой воды через встроенный пучок

При охлаждении конденсатора сетевой водой турбина может работать по теплово­му графику. Максимальная тепловая мощность встроенного пучка составляет -130 ГДж/ч при поддержании температуры в выхлопной части не выше 80 °С.

Допускается длительная работа турбины с номинальной мощностью при следую­щих отклонениях основных параметров от номинальных:

  • при одновременном изменении в любых сочетаниях начальных параметров свеже­го пара — давления от 12,25 до 13,23 МПа и температуры от 545 до 560 °С; при этом тем­пература охлаждающей воды должна быть не выше 20 °С;
  • при повышении температуры охлаждающей воды при входе в конденсатор до 33 °С и расходе охлаждающей воды 8000 м3/ч, если начальные параметры свежего пара при этом не ниже номинальных;
  • при одновременном уменьшении величин производственного и отопительных от­боров пара до нуля.
  • при повышении давления свежего пара до 13,72 МПа и температуры до 565 °С до­пускается работа турбины в течение не более получаса, причем общая продолжитель­ность работы турбины при этих параметрах не должна превышать 200 ч/год.

Для данной турбинной установки ПТ-80/100-130/13 используеться подогреватель высокого давления №7 (ПВД-475-230-50-1). ПВД-7 работает при параметрах пара перед входом в подогреватель: давлении 4,41 МПа, температуре 420 °С и расходом пара 7,22 кг/с. Параметры питательной воды при этом: давление 15,93МПа, температура 233 °С и расход 130 кг/с.

ПАРОТУРБИННАЯ УСТАНОВКА ПТ-80/100-130/13

МОЩНОСТЬЮ 80 МВт

Паровая конденсационная турбина ПТ-80/100-130/13 (рис. 1) с регулируемыми отборами пара (производственным и двухступенчатым теплофи­кационными) номинальной мощностью 80 МВт, с частотой вращения 3000 об/мин предназначена для непосредственного привода генератора пере­менного тока мощностью 120 МВт типа ТВФ-120-2 при работе в блоке с котельным агрегатом.

Турбина имеет регенеративное устройство для подогрева питательной воды, сетевые подогревате­ли для ступенчатого подогрева сетевой воды и должна работать совместно с конденсационной установкой (рис. 2).

Турбина рассчитана для работы при следующих основных параметрах, которые представленны в табл.1.

Турбина имеет регулируемые отборы пара: про­изводственный с давлением 13±3 кгс/см 2 абс.; два теплофикационных отбора (для подогрева сетевой воды): верхний с давлением 0,5-2,5 кгс/см 2 абс.; нижний-0,3-1 кгс/см 2 абс.

Регулирование давления осуществляется с помощью одной регулирующей диафрагмы, уста­новленной в камере нижнего теплофикационного отбора.

Регулируемое давление в теплофикационных отборах поддерживается: в верхнем отборе при включенных двух теплофикационных отборах, в нижнем - при включенном одном нижнем теплофи­кационном отборе.

Подогрев питательной воды осуществляется последовательно в ПНД, деаэраторе и ПВД, кото­рые питаются паром из отборов турбины (регули­руемых и нерегулируемых).

Данные о регенеративных отборах приведены в табл. 2 и соответствуют параметрам по всем по­казателям.

Таблица 1 Таблица 2

Подогреватель

Параметры пара в камере отбора

Количество отбираемого пара, т/ч

Давление, кгс/см 2 абс.

Температура, С

ПВД № 6

Деаэратор

ПНД № 2

ПНД № 1


Питательная вода, поступающая из деаэратора в регенеративную систему турбоустановки, имеет температуру 158° С.

При номинальных параметрах свежего пара, расходе охлаждающей воды 8000 м 3 ч, температу­ре охлаждающей воды 20° С, полностью включен­ной регенерации, количестве воды, подогреваемой в ПВД, равном 100%-ному расходу пара, при ра­боте турбоустановки по схеме с деаэратором 6 кгс/см 2 абс. со ступенчатым подогревом сетевой воды, при полном использовании пропускной способности турбины и минимальном пропуске пара в конденсатор могут быть взяты следующие величи­ны регулируемых отборов: номинальные величины регулируемых отборов при мощности 80 МВт; производственный отбор 185 т/ч при давлении 13 кгс/см 2 абс.; суммарный теплофикационный отбор 132 т/ч при давлениях: в верхнем отборе 1 кгс/см 2 абс. и в нижнем отборе 0,35 кгс/см 2 абс.; максимальная величина производственного от­бора при давлении в камере отбора 13 кгс/см 2 абс. составляет 300 т/ч; при этой величине производст­венного отбора и отсутствии теплофикационных отборов мощность турбины составит 70 МВт; при номинальной мощности 80 МВт и отсутст­вии теплофикационных отборов максимальный производственный отбор составит около 245 т/ч; максимальная суммарная величина теплофика­ционных отборов равна 200 т/ч; при этой величине отбора и отсутствии производственного отбора мощность составит около 76 МВт; при номиналь­ной мощности 80 МВт и отсутствии производствен­ного отбора максимальные теплофикационные от­боры составят 150 т/ч. Кроме того, номинальная мощность 80 МВт может быть достигнута при мак­симальном теплофикационном отборе 200 т/ч и производственном отборе 40 т/ч.

Допускается длительная работа турбины при следующих отклонениях основных параметров от номинальных: давления свежего пара 125- 135 кгс/см 2 абс.; температуры свежего пара 545- 560° С; повышении температуры охлаждающей воды на входе в конденсатор до 33° С и расходе охлаждающей воды 8000 м 3 ч; одновременном уменьшении величины производственного и тепло­фикационных отборов пара до нуля.

При повышении давления свежего пара до 140 кгс/см 2 абс. и температуры до 565° С допуска­ется работа турбины в течение не более 30 мин, а общая продолжительность работы турбины при этих параметрах не должна превышать 200 ч в год.

Длительная работа турбины с максимальной мощностью 100 МВт при определенных сочетаниях производственного и теплофикационных отборов зависит от величины отборов и определяется диа­граммой режимов.

Не допускается работа турбины: при давлении пара в камере производственного отбора выше 16 кгс/см 2 абс. и в камере теплофика­ционного отбора выше 2,5 кгс/см 2 абс.; при давлении пара в камере перегрузочного клапана (за 4-й ступенью) выше 83 кгс/см 2 абс.; при давлении пара в камере регулирующего ко­леса ЦНД (за 18-й ступенью) выше 13,5 кгс/см 2 абс.; при включенных регуляторах давления и дав­лениях в камере производственного отбора ниже 10 кгс/см 2 абс., и в камере нижнего теплофикацион­ного отбора ниже 0,3 кгс/см 2 абс.; на выхлоп в атмосферу; температуре выхлопной части турбины выше 70° С; по временной незаконченной схеме установки; при включенном верхнем теплофикационном от­боре с выключенным нижним теплофикационным отбором.

Турбина снабжена валоповоротным устройством, вращающим ротор турбины.

Лопаточный агрегат турбины рассчитан на ра­боту при частоте сети 50 Гц (3000 об/мин).

Допускается длительная работа турбины при отклонениях частоты сети в пределах 49-50,5 Гц, кратковременная работа при минимальной частоте 48,5 Гц, пуск турбины на скользящих параметрах пара из холодного и горячего состояний.

Ориентировочная продолжительность пусков турбины из различных тепловых состояний (от толчка до номинальной нагрузки): из холодного состояния-5 ч; через 48 ч простоя-3 ч. 40 мин; через 24 ч простоя-2 ч 30 мин; через 6-8 ч про­стоя - 1 ч 15 мин.

Допускается работа турбины на холостом ходу после сброса нагрузки не более 15 мин, при усло­вии охлаждения конденсатора циркуляционной водой и полностью открытой поворотной диа­фрагме.

Гарантийные расходы тепла. В табл. 3 приве­дены гарантийные удельные расходы тепла. Удель­ный расход пара гарантируется с допуском 1 % сверх допуска на точность испытаний.

Таблица 3

Мощность на клеммах генератора, МВт

Производственный отбор

Теплофикационный отбор

Температура сетевой воды на входе в сетевой подогреватель, ПСГ 1, °С

КПД генератора, %

Температура подогрева питательной воды, °С

Удельный расход тепла, ккал/кВтч

Давление, кгс/см 2 абс.

Давление, кгс/см 2 абс.

Количество отбираемого пара, т/ч

* Регуляторы давления в отборах выключены .

Конструкция турбины. Турбина представляет собой одновальный двухцилиндровый агрегат. Про­точная часть ЦВД имеет одновенечную регули­рующую ступень и 16 ступеней давления.

Проточная часть ЦНД состоит из трех частей: первая (до верхнего теплофикационного отбора) имеет регулирующую ступень и семь ступеней дав­ления, вторая (между теплофикационными отбо­рами) имеет две ступени давления и третья имеет регулирующую ступень и две ступени давления.

Ротор высокого давления цельнокованый. Пер­вые десять дисков ротора низкого давления откова­ны заодно с валом, остальные три диска - насад­ные.

Роторы ЦВД и ЦНД соединяются между собой жестко с помощью фланцев, откованных заодно с роторами. Роторы ЦНД и генератора типа ТВФ-120-2 соединяются посредством жесткой муф­ты.

Критические числа оборотов валопровода тур­бины и генератора в минуту: 1 580; 2214; 2470; 4650 соответствуют I, II, III и IV тонам поперечных колебаний.

Турбина имеет сопловое парораспределение. Свежий пар подается к отдельно стоящей паровой коробке, в которой расположен автоматический затвор, откуда по перепускным трубам пар посту­пает к регулирующим клапанам турбины.

По выходе из ЦВД часть пара идет в регули­руемый производственный отбор, остальная часть направляется в ЦНД.

Теплофикационные отборы осуществляются из соответствующих камер ЦНД. По выходе из по­следних ступеней ЦНД турбины отработанный пар попадает в конденсатор поверхностного типа.

Турбина снабжена паровыми лабиринтовыми уплотнениями. В предпоследние отсеки уплотнений подается пар при давлении 1,03-1,05 кгс/см 2 абс. температуре около 140°С из коллектора, питаемо­го паром из уравнительной линии деаэратора (6 кгс/см 2 абс.) или парового пространства бака.

Из крайних отсеков уплотнений паровоздушная смесь отсасывается эжектором в вакуумный охла­дитель.

Фикспункт турбины расположен на раме турби­ны со стороны генератора, и агрегат расширяется в сторону переднего подшипника.

Для сокращения времени прогрева и улучшения условий пусков предусмотрены паровой обогрев фланцев и шпилек и подвод острого пара на перед­нее уплотнение ЦВД.

Регулирование и защита. Турбина снабжена гидравлической системой регулирования (рис. 3);

1- ограничитель мощности; 2-блок золотни­ков регулятора скорости; 3-дистанционное управ­ление; 4-сервомотор автоматического затвора; 5-регулятор частоты вращения; 6-регулятор безопасности; 7-золотники регулятора безопасно­сти; 8-дистанционный указатель положения сер­вомотора; 9-сервомотор ЧВД; 10-сервомотор ЧСД; 11-сервомотор ЧНД; 12-электрогидрав­лический преобразователь (ЭГП); 13-суммирую­щие золотники; 14-аварийный электронасос; 15-резервный электронасос смазки; 16-пуско­вой электронасос системы регулирования (пере­менного тока);

I -напорная линия 20 кгс/см 2 абс.; II -линия к золотнику сервомотора ЦВД; III -линия к зо­лотнику сервомотора Ч"СД; IV-линия к золотник у сервомотора ЧНД; V-линия всасывания цент­робежного главного насоса; VI-линия смазки до маслоохладителей; VII-линия к автоматиче­скому затвору; VIII-линия от суммирующих зо­лотников к регулятору скорости; IX-линия до­полнительной защиты; Х- прочие линии.

Рабочей жидкостью в системе является мине­ральное масло.

Перестановка регулирующих клапанов впуска свежего пара, регулирующих клапанов перед ЧСД и поворотной диафрагмы перепуска пара в ЧНД производится сервомоторами, которые управляют­ся регулятором частоты вращения и регуляторами давления отборов.

Регулятор предназначен для поддержания ча­стоты вращения турбогенератора с неравномер­ностью около 4%. Он снабжен механизмом управ­ления, который используется для: зарядки золотников регулятора безопасности и открытия автоматического затвора свежего пара; изменения частоты вращения турбогенератора, причем обеспечивается возможность синхрониза­ции генератора при любой аварийной частоте в системе; поддержания заданной нагрузки генератора при параллельной работе генератора; поддержания нормальной частоты при одиноч­ной работе генератора; повышения частоты вращения при испытании бойков регулятора безопасности.

Механизм управления может приводиться в действие как вручную-непосредственно у турби­ны, так и дистанционно-со щита управления.

Регуляторы давления сильфонной конструкции предназначены для автоматического поддержания давления пара в камерах регулируемых отборов с неравномерностью около 2 кгс/см 2 для производст­венного отбора и около 0,4 кгс/см 2 для теплофика­ционного отбора.

В системе регулирования имеется электрогид­равлический преобразователь (ЭГП), на закрытие и открытие регулирующих клапанов которого воз­действуют технологическая защита и противоаварийная автоматика энергосистемы.

Для защиты от недопустимого возрастания ча­стоты вращения турбина снабжена регулятором безопасности, два центробежных бойка которого мгновенно срабатывают при достижении частоты вращения в пределах 11-13% сверх номинальной, чем вызывается закрытие автоматического затвора свежего пара, регулирующих клапанов и поворот­ной диафрагмы. Кроме того, имеется дополнитель­ная защита на блоке золотников регулятора скоро­сти, срабатывающая при повышении частоты на 11,5%.

Турбина снабжена электромагнитным выклю­чателем, при срабатывании которого закрываются автоматический затвор, регулирующие клапаны и поворотная диафрагма ЧНД.

Воздействие на электромагнитный выключатель осуществляют: реле осевого сдвига при перемеще­нии ротора в осевом направлении на величину,

превышающую предельно допустимую; вакуум-реле при недопустимом падении вакуума в конден­саторе до 470 мм рт. ст. (при снижении вакуума до 650 мм рт. ст. вакуум-реле подает предупреди­тельный сигнал); потенциометры температуры све­жего пара при недопустимом понижении темпера­туры свежего пара без выдержки времени; ключ для дистанционного отключения турбины на щите управления; реле падения давления в системе смазки с выдержкой времени 3 с с одновременной подачей аварийного сигнала.

Турбина снабжена ограничителем мощности, используемым в особых случаях для ограничения открытия регулирующих клапанов.

Обратные клапаны предназначены для предот­вращения разгона турбины обратным потоком пара и установлены на трубопроводах (регулируемых и нерегулируемых) отборов пара. Клапаны закры­ваются противотоком пара и от автоматики.

Турбоагрегат оборудован электронными регу­ляторами с исполнительными механизмами для поддержания: заданного давления пара в коллекторе конце­вых уплотнений путем воздействия на клапан пода­чи пара из уравнительной линии деаэраторов 6 кгс/см 2 или из парового пространства бака; уровня в конденсатосборнике конденсатора с максимальным отклонением от заданного ±200 мм, (этим же регулятором включается рециркуляция конденсата при малых расходах пара в конденса­торе) ; уровня конденсата греющего пара во всех подо­гревателях системы регенерации, кроме ПНД № 1.

Турбоагрегат снабжен защитными устройствами: для совместного отключения всех ПВД с одно­временным включением обводной линии и подачей сигнала (устройство срабатывает в случае аварий­ного повышения уровня конденсата вследствие повреждений или нарушений плотности трубной системы в одном из ПВД до первого предела); атмосферными клапанами-диафрагмами, кото­рые установлены на выхлопных патрубках ЦНД и открываются при повышении давления в патруб­ках до 1,2 кгс/см 2 абс.

Система смазки предназначена для питания маслом Т-22 ГОСТ 32-74 системы регулирования и системы смазки подшипников.

В систему смазки до маслоохладителей масло подается при помощи двух инжекторов, включен­ных последовательно.

Для обслуживания турбогенератора в период его пуска предусматривается пусковой масляный электронасос с частотой вращения 1 500 об/мин.

Турбина снабжена одним резервным насосом с электродвигателем переменного тока и одним аварийным насосом с электродвигателем постоян­ного тока.

При снижении давления смазки до соответству­ющих значений автоматически от реле давления смазки (РДС) включаются резервный и аварийный насосы. РДС периодически испытывается во время работы турбины.

При давлении ниже допустимого турбина и валоповоротное устройство отключаются от сигнала РДС на электромагнитный выключатель.

Рабочая емкость бака сварной конструкции со­ставляет 14 м 3 .

Для очистки масла от механических примесей в баке установлены фильтры. Конструкция бака позволяет производить быструю безопасную сме­ну фильтров. Имеется фильтр тонкой очистки мас­ла от механических примесей, обеспечивающий по­стоянную фильтрацию части расхода масла, потребляемого системами регулирования и смазки.

Для охлаждения масла предусматриваются два маслоохладителя (поверхностные вертикальные), предназначенных для работы на пресной охлажда­ющей воде из циркуляционной системы при темпе­ратуре, не превышающей 33° С.

Конденсационное устройство, предназначенное для обслуживания турбоустановки, состоит из конденсатора, основных и пусковых эжекторов, конденсатных и циркуляционных насосов и водя­ных фильтров.

Поверхностный двухходовой конденсатор с об­щей поверхностью охлаждения 3 000 м 2 предназна­чен для работы на пресной охлаждающей воде. В нем предусмотрен отдельный встроенный пучок по­догрева подпиточной или сетевой воды, поверхность нагрева которого составляет около 20% от всей поверхности конденсатора.

С конденсатором поставляется уравнительный сосуд для присоединения датчика электронного ре­гулятора уровня, воздействующего на регулирую­щий и рециркуляционный клапаны, установленные на трубопроводе основного конденсата. Конденса­тор имеет встроенную в паровую часть специаль­ную камеру, в которой устанавливается секция ПНД № 1.

Воздухоудаляющее устройство состоит из двух основных трехступенчатых эжекторов (один ре­зервный), предназначенных для отсоса воздуха и обеспечения нормального процесса теплообмена в конденсаторе и прочих вакуумных аппаратах теп­лообмена и одного пускового эжектора для быст­рого поднятия вакуума в конденсаторе до 500- 600 мм рт. ст.

В конденсационном устройстве устанавливают­ся два конденсатных насоса (один резервный) вертикального типа для откачки конденсата, подачи его в деаэратор через охладители эжектора, охла­дители уплотнений и ПНД. Охлаждающая вода для конденсатора и газоохладителей генератора подается циркуляционными насосами.

Для механической очистки охлаждающей воды, поступающей к маслоохладителям и газоохлади­телям агрегата, устанавливаются фильтры с по­воротными сетками для промывки на ходу.

Пусковой эжектор циркуляционной системы предназначен для заполнения системы водой перед пуском турбоустановки, а также для удаления воз­духа при скоплении его в верхних точках сливных циркуляционных водоводов и в верхних водяных камерах маслоохладителей.

Для срыва вакуума используется электрозадвижка на трубопроводе отсоса воздуха из конден­сатора, установленная у пускового эжектора.

Регенеративное устройство предназначено для подогрева питательной воды (конденсата турбины) паром, отбираемым из промежуточных ступеней турбины. Установка состоит из поверхностного кон­денсатора рабочего пара, основного эжектора, по­верхностных охладителей пара из лабиринтовых уп­лотнений, поверхностных ПНД, после которых кон­денсат турбины направляется в деаэратор поверх­ностных ПВД для подогрева питательной воды пос­ле деаэратора в количестве около 105% от макси­мального расхода пара турбиной.

ПНД № 1 встроен в конденсатор. Остальные ПНД устанавливаются отдельной группой. ПВД №№ 5, 6 и 7 - вертикальной конструкции со встроенными пароохладителями и охладителями дренажа.

ПВД снабжаются групповой защитой, состоя­щей из автоматических выпускного и обратного клапанов на входе и выходе воды, автоматического клапана с электромагнитом, трубопровода пуска и отключения подогревателей.

ПВД и ПНД снабжены каждый, кроме ПНД № 1, регулирующим клапаном отвода конденсата, управляемым электронным "регулятором.

Слив конденсата греющего пара из подогрева­телей - каскадный. Из ПНД № 2 конденсат отка­чивается сливным насосом.

Конденсат из ПВД № 5 непосредственно направ­ляется в деаэратор 6 кгс/см 2 абс. или при недоста­точном давлении в подогревателе при малых нагруз­ках турбины автоматически переключается на слив в ПНД.

Характеристики основного оборудования реге­неративной установки приведены в табл. 4.

Для отсоса пара из крайних отсеков лабиринто­вых уплотнений турбины поставляется специальный вакуумный охладитель СП.

Отсос пара из промежуточных отсеков лабирин­товых уплотнений турбины производится в охлади­тель вертикального типа СО. Охладитель включен в регенеративную схему подогрева основного кон­денсата после ПНД № 1.

Конструкция охладителя аналогична конструк­ции подогревателей низкого давления.

Подогрев сетевой воды осуществляется в уста­новке, состоящей из двух сетевых подогревателей № 1 и 2 (ПСГ № 1 и 2), включенных по пару со­ответственно в нижний и верхний отопительные от­боры. Тип сетевых подогревателей-ПСГ-1300-3-8-1.

Наименование оборудования

Поверхность нагрева, м 2

Параметры рабочей среды

Давление, кгс/см 2 абс., при гидравлическом испытании в пространствах

Расход воды, м 3 /ч

Сопротив-ление, м вод. ст.

Встроен в конденсатор

ПНД №2

ПН-130-16-9-II

ПНД №3

ПНД №4

ПНД №5

ПВ-425-230-23-1

ПНД №6

ПВ-425-230-35-1

ПНД №7

Охладитель пара из промежуточных камер уплотнений

ПН-130-1-16-9-11

Охладитель пара из концевых камер уплотнений

Поделиться: