Уровень шума при истечении воздуха из отверстия. Мануйлов Р.Е. Пневматические исполнительные устройства. Влияние конструктивных особенностей воздухораспределительных устройств на генерируемый шум

Основными соотношениями, необходимыми для описания работы пневматических устройств, являются соотношения, описывающие законы движения воздуха. Принимается, что воздух является идеальной жидкостью, т.е. такой жидкостью, в которой частицы перемешаются одна относительно другой без трения. Предположим, что движение установившееся и свойства жидкости в данном сечении остаются постоянными, т.е. давление и температура не изменяются. Обозначим через c , p , g , ? , z , соответственно, скорость движения жидкости, давление, ускорение силы тяжести, плотность жидкости и высоту над плоскостью отсчета. Уравнение Бернулли в дифференциальной форме, выражающее закон сохранения энергии, записывается в виде:

Интегрирование этого уравнения дает выражение закона движения жидкости:

Величина Н -- постоянная интегрирования, представляет собой полный напор, развиваемый движущейся жидкостью. Он равен сумме напоров скоростного, пьезометрического и геометрического. Учитывая низкую плотность воздуха, величиной z обычно пренебрегают. Поэтому.

Для идеальной жидкости запас энергии в каждом сечении потока остается неизменным. У реальных жидкостей, имеющих трение, запас энергии от сечения к сечению по направлению потока убывает. Уравнение для реальной жидкости между двумя произвольными сечениями потока имеет вид:

Обычно гидравлические потери Н 12 принимают пропорциональными изменению кинетической энергии, т.е.

где величина ? называется коэффициентом гидравлических потерь; с -- средняя скорость в сечении потока.

В случае истечения воздуха из резервуара с достаточно большими размерами (рисунок 2) скоростью воздуха перед отверстием можно пренебречь и тогда

Рисунок 2

Величина называется коэффициентом скорости.

В каналах пневматических сопротивлений скорость течения воздуха сравнительно велика, и поэтому, с достаточной степенью точности можно считать, что теплообмен между протекающим воздухом и стенками канала отсутствует и, следовательно, истечение происходит по адиабатическому закону. Поэтому, можно записать:

где k -- показатель адиабаты; ? , ? 1 -- плотности воздуха в различных сечениях.

Массовый расход воздуха

где F --площадь сечения А-А; ? 2 --плотность воздуха в сечении А-А.

В полученном выражении за плотность воздуха в сечении отверстия площадью F принята плотность в среде, куда происходит истечение.

На самом деле плотность воздуха в этом сечении иная. Выравнивание плотности воздуха в струе с плотностью воздуха окружающей среды происходит в сечении Б-Б, расположенном на некотором расстоянии от отверстия. При этом площадь сечения Б-Б меньше площади отверстия F . Отношение сжатого сечения к расчетному называют коэффициентом сжатия струи. Произведение коэффициента сжатия на коэффициент скорости называют коэффициентом расхода ? . Таким образом, для уточнения в формулу для определения расхода G m вместо ? следует Рисунок 3

На практике приходится рассчитывать расход воздуха не для отверстия с тонкими стенками, а для различных видов дросселирующих сопротивлений, имеющих более сложную конфигурацию, В этих случаях коэффициент расхода определяют экспериментально, и он является поправочным коэффициентом, учитывающим геометрию дросселя.

Расход (рисунок 3) имеет максимальное значение при

Показатель адиабаты k для воздуха равен 1,4, следовательно, ? кр = 0,528.

Момент равенства ?=? кр соответствует в канале дросселирующего сопротивления скорости течения воздуха, равной скорости звука. Экспериментально показано, что если в дальнейшем понижать давление р 2 , то расход G m не увеличится, а останется постоянным. Поэтому, в случае докритического течения (?? ? кр ), пользуются формулой

а в случае надкритического течения (? < ? кр ) -- формулой

Для расчета расхода воздуха часто пользуются более простой формулой

где,р i --давление в полости до подводящего отверстия; р i -1 --давление в полости за подводящим отверстием; G кр -- критическое значение массового расхода, определяемое по формуле

где d--диаметр подводящего отверстия.

Максимальная погрешность при таком определении расхода равна 3,4%.


РЕФЕРАТ

Пневматические устройства играют важную роль в механизации производства. В последнее время они также широко используются при решении задач автоматизации.

Пневматические устройства в системах автоматики выполняют следующие функции:

Получение информации о состоянии системы с помощью входных элементов (датчиков);

Обработка информации с помощью логико-вычислительных элементов (процессоров);

Управление исполнительными устройствами с помощью распределительных элементов (усилителей мощности);

Совершение полезной работы с помощью исполнительных устройств (двигателей).

КОМПРЕССОР, ПНЕВМОЦИЛИНДР, РАСПРЕДЕЛИТЕЛЬ, УСИЛИЕ, СКОРОСТЬ, ДАВЛЕНИЕ, РАСХОД, НОМОГРАММА.


ВВЕДЕНИЕ

В настоящее время все чаще для автоматизации производственных процессов и отдельных операций используется новая отрасль техники - мехатроника, которая включает в себя совокупность механических, гидравлических, пневматических, электронных элементов. Широкое распространение в последнее время получает пневмоавтоматика благодаря ряду существенных достоинств пневмосистем: легкое управление исполнительными механизмами, сравнительно большая скорость рабочего перемещения и др. Электрогидравлические и электропневматические системы автоматического управления получают все более широкое распространение в самых различных областях техники, включая робототехнические и автоматизированные комплексы машиностроительной, космической, авиационной, химической, пищевой, атомной и других отраслей промышленности. Сочетая в себе известные достоинства электрической связи и управления с быстродействием и относительной легкостью мощных гидро- и пневмоприводов, эти системы вытесняют чисто механические и электрические системы управления и контроля.

Технический прогресс в области создания материалов, способов конструирования и производства способствует улучшению качества и увеличению разнообразия пневматических устройств, что послужило основой для расширения области их применения как средств автоматизации.

Для реализации прямолинейного движения часто используют пневмоцилиндры, т.к. они характеризуются низкой стоимостью, легкостью монтажа, простотой и прочностью конструкции, а также широким диапазоном основных параметров.


ПНЕВМАТИЧЕСКИЕ ИСПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА

Пневматические исполнительные устройства предназначены для преобразования энергии сжатого воздуха в механическое линейное перемещение или вращение. Они используются для приведения в движение рабочих органов машин, выполнения различных основных и вспомогательных операций. Линейное перемещение обеспечивается пневмоцилиндрами, поворотное движение - исполнительными устройствами, имеющими в качестве рабочего органа лопасть или шестерню с рейкой,

В пневмоцилиндрах одностороннего действия давление сжатого воздуха действует на поршень только в одном направлении, в обратную сторону поршень со штоком перемещается под действием пружины или внешних сил. Пневмоцилиндры с пружинным возвратом используют для выполнения небольших перемещений и с небольшими развиваемыми усилиями, так как встроенная пружина, сжимаясь, значительно снижает усилие, развиваемое поршнем.

В пневмоцилиндрах двустороннего действия перемещение поршня со штоком под действием сжатого воздуха происходит в прямом и обратном направлениях.

Поворотные пневмодвигатели могут быть поршневыми и лопастными,

Кроме названных выше типов, в промышленности используются также пневмоустройства специального назначения. К ним относятся бесштоковые цилиндры, позиционные цилиндры, пневмокаретки, цилиндры с полым штоком, с тормозом и пневмозахваты.

В процессе монтажа, наладки и эксплуатации пневматических исполнительных устройств необходимо предусматривать ряд конструктивных мер безопасности.

Чтобы свести к минимуму риск нанесения травм персоналу, рекомендуется применять защитные ограждения.

При высокой скорости движения рабочего органа устройства или в случае больших инерционных нагрузок, собственный демпфер пневмодвигателя может оказаться недостаточным для смягчения удара. Для снижения скорости рабочего органа до включения собственного демпфера рекомендуется использовать схемы замедления или устанавливать наружные демпферу, ослабляющие удар. В последнем случае конструкция должна обладать достаточной жесткостью.

Во избежание травм персонала, повреждения оборудования и объектов производства, необходимо предусматривать конструктивные меры, обеспечивающие соблюдение безопасности при падении давления. Такие меры особенно необходимы в системах с подвешенными грузами и в подъемно-транспортных механизмах.

Если пневмопривод управляется с помощью трехпозиционных пневмораспределителей, у которых в нейтральном положении все выходы сообщены с выхлопом, или возобновляет работу после того, как давление в пневмосистеме было сброшено, возможен резкий рывок рабочего органа с места и затем его движение с чрезмерно высокой скоростью. Это обусловлено тем, что в одну полость цилиндра подано высокое давление, в то время как в другой полости давление отсутствует, и нет никакого противодействия движению поршня, которое обычно бывает при вытеснении воздуха из полости пневмоцилиндра. В этих случаях необходимо предусматривать меры против резких рывков - например, применяя устройства плавной подачи воздуха.

Все виды нагрузок на шток поршня должны быть приложены только в осевом направлении. Неизбежные боковые нагрузки, приложенные к концу штока, не должны превышать значения, допустимые для каждого типа пневмоцилиндра. Не рекомендуется использовать пневмоцилиндр как амортизатор.

Если в пневмоцилиндре есть воздушный демпфер, он может работать только при условии, что шток доходит до своего крайнего положения. Поэтому, если длина хода поршня определяется какими-либо внешними ограничителями, необходимо убедиться, что демпфирование действительно имеет место.

Если пневмоцилиндр должен работать при полностью открытом клапане воздушного демпфера, необходимо выбрать тип цилиндра, снабженный резиновым демпфером. Не рекомендуется эксплуатировать привод с завинченным до упора регулировочным винтом демпфера, так как это может привести к повреждению уплотнения цилиндра.

Прежде чем затягивать резьбовое соединение на конце штока требуется привести его в полностью утопленное положение. При затяжке шток не должен вращаться.

При техническом обслуживании оборудования необходимо, прежде всего, убедиться, что в результате отключения питания не произойдет падение транспортируемых объектов или узлов оборудования, находящихся в поднятом или неустойчивом положении. Только после этого можно отключать электрическое и пневматическое питание, обязательно удостоверившись в том, что давление в системе полностью сброшено.

1. Свойства воздуха

Рабочим телом для исполнительных устройств электропневмоавтоматики служит сжатый воздух, представляющий собой смесь из азота и кислорода (по объему примерно 78% и 21%, соответственно) и других газов, содержащихся в небольших количествах (аргон, углекислый газ и др.), а также водяного пара.

Основными и наиболее распространенными параметрами сжатого воздуха являются температура, давление и удельный объем (или плотность).

Давление представляет собой силу, действующую по нормали к поверхности тела и отнесенную к единице площади этой поверхности.

Атмосфера Земли на ее поверхности развивает давление в одну физическую атмосферу. Давление, отсчитываемое сверх величины атмосферного давления, называется избыточным или манометрическим и указывается в технических характеристиках пневматических устройств.

Полное давление равно сумме избыточного и атмосферного давления:

Полное давление газа пропорционально его абсолютной температуре Т и концентрации молекул n , которую можно определить как отношение;

где N - число молекул, находящихся в сосуде; V - объем сосуда.

Давление р газа равно:

.

Коэффициент пропорциональности представляет собой постоянную Больцмана, равную:

.

Чаще известен объем V сосуда и масса т заключенного в нем воздуха. В предположении, что воздух является идеальным газом (отсутствует межмолекулярное взаимодействие), давление р внутри сосуда может быть определено по формуле Клапейрона:

,

где R - универсальная газовая постоянная (для воздуха R =287 Дж/кг К), которая равна внешней работе, совершаемой при постоянном давлении одним килограммом воздуха при нагревании его на 1 градус; Т -температура в градусах Кельвина (абсолютная температура).

Нулевая температура по Цельсию в физике

.

Если концентрация газа в сосуде равна нулю, то полное давление в таком сосуде тоже равно нулю. Можно считать, что на поверхности Земли сосуд обладает некоторой потенциальной энергией, так как весь окружающий ею воздух находится под атмосферным давлением и, входя в сосуд, может совершить работу.

Так работают многие вакуумные устройства, например, вакуумные приводы, вакуумные присоски и т.п. Говорят, что эти устройства работают на разрежение.

Сосуд будет также обладать потенциальной энергией, если давление газа внутри него будет больше атмосферного (т.е. p и >0). Здесь газ также может совершить работу, но уже при выходе из сосуда в атмосферу, т.е. привести в действие устройства, работающие на нагнетание.

Поскольку большинство устройств промышленной электропневмоавтоматики работает на нагнетание, а магистральное давление существенно больше атмосферного, при расчете усилий удобно пользоваться избыточным давлением. В термодинамических расчетах пользуются полным давлением.

В системе СИ единицей измерения давления служит паскаль (Па). Паскаль равен давлению, вызываемому силой в 1Н (ньютон), равномерно распределенной по нормальной к ней поверхности площадью 1 м 2 (I Па = 1 Н/м 2).

Соотношения между единицами давления приведены в таблице 2.

Таблица 2. Соотношение между единицами давления

Единицы

кГс/см 2

Бар

Па

р si

мм рт.ст.

1 кГс/см 2

0,98

9,81 10 -4

14,22

735,6

1 Бар

1,02

10 5

14,5

750,3

1 Па

1.02 10 -5

10 -5

1,45 10 -4

7,5 10 -3

1 р si (фунт-сила/кв.дюйм)

0,07

0.07

6,9 10 -3

51,71

1 мм рт.ст.

1,36 10 -4

133,3 10 -3

133,3

19,34 10 -3

1 мм вод.ст

10 -4

9,81 10 -5

9,81

1,42 10 -3

7,36 10 -2

2. Основные термодинамические законы

Во многих случаях уравнения состояния идеальных газов в пневмоавтоматике можно использовать с достаточной точностью и для реальных газов.

Бойлем в 1662 г. в Англии, а затем независимо от него Мариоттом в 1676 г. во Франции было установлено, что если газ занимал некоторый первоначальный объем V 0 и имел давление р о , то послесжатия до объема V 1 его давление p 1 , при условии, что температура газа не изменяется (изотермический процесс), повысится до величины, при которой произведение начального объема и давления будет равно произведению конечного объема и давления (рисунок 1,а);

.

Французским ученым Ж. Шарлем в 1787 г. было установлено, что если газ занимает постоянный объем (изохорный процесс), то при увеличении или уменьшении первоначальной температуры газа внутри постоянного объема первоначальное давление, соответственно, увеличится или уменьшится пропорционально изменению температуры (рисунок 1,б):

,

откуда

.

При неизменном давлении (изобарный процесс) нагревание или охлаждение первоначального объема газа приводит, соответственно, к возрастанию или уменьшению объема пропорционально изменению температуры в градусах Кельвина:

.

Это было установлено Ж. Гей-Люссаком в 1802 году.

При адиабатном процессе нет теплообмена между системой и окружающей средой. Приближенно можно считать адиабатным процесс в нетеплоизолированной системе, если он осуществляется столь быстро, что теплообмен между системой и окружающей средой практически не успевает происходить. Адиабатный процесс описывается уравнением

где k - показатель адиабаты, равный отношению теплоемкости газа при постоянном давлении р к теплоемкости газа при постоянном объеме V .

Изотермический, изобарный, изохорный и адиабатный процессы являются частными случаями политропного процесса (от греч. многообразный). Этот процесс описывается уравнением

где n - показатель политропы: при n = k - процесс политропный; при n =0 -

процесс изобарный; при n =1-изотермический; при n =±?-изохорный.

3. Истечение сжатого воздуха через отверстие

1

Основными соотношениями, необходимыми для описания работы пневматических устройств, являются соотношения, описывающие законы движения воздуха. Принимается, что воздух является идеальной жидкостью, т.е. такой жидкостью, в которой частицы перемешаются одна относительно другой без трения. Предположим, что движение установившееся и свойства жидкости в данном сечении остаются постоянными, т.е. давление и температура не изменяются. Обозначим через c , p , g , ? , z , соответственно, скорость движения жидкости, давление, ускорение силы тяжести, плотность жидкости и высоту над плоскостью отсчета. Уравнение Бернулли в дифференциальной форме, выражающее закон сохранения энергии, записывается в виде:

.

Интегрирование этого уравнения дает выражение закона движения жидкости:

.

Величина Н - постоянная интегрирования, представляет собой полный

напор, развиваемый движущейся жидкостью. Он равен сумме напоров скоростного, пьезометрического и геометрического. Учитывая низкую плотность воздуха, величиной z обычно пренебрегают. Поэтому.

.

Для идеальной жидкости запас энергии в каждом сечении потока остается неизменным. У реальных жидкостей, имеющих трение, запас энергии от сечения к сечению по направлению потока убывает. Уравнение для реальной жидкости между двумя произвольными сечениями потока имеет вид:

.

Обычно гидравлические потери Н 12 принимают пропорциональными изменению кинетической энергии, т.е.

,

где величина ? называется коэффициентом гидравлических потерь; с - средняя скорость в сечении потока.

В случае истечения воздуха из резервуара с достаточно большими размерами (рисунок 2) скоростью воздуха перед отверстием можно пренебречь и тогда

.

Рисунок 2

Величина называется коэффициентом скорости.

В каналах пневматических сопротивлений скорость течения воздуха сравнительно велика, и поэтому, с достаточной степенью точности можно считать, что теплообмен между протекающим воздухом и стенками канала отсутствует и, следовательно, истечение происходит по адиабатическому закону. Поэтому, можно записать: F -площадь сечения А-А; ? 2 -плотность воздуха в сечении А-А.


.

В полученном выражении за плотность воздуха в сечении отверстия площадью F принята плотность в среде, куда происходит истечение.

На самом деле плотность воздуха в этом сечении иная. Выравнивание плотности воздуха в струе с плотностью воздуха окружающей среды происходит в сечении Б-Б, расположенном на некотором расстоянии от отверстия. При этом площадь сечения Б-Б меньше площади отверстия F . Отношение сжатого сечения к расчетному называют коэффициентом сжатия струи. Произведение коэффициента сжатия на коэффициент скорости называют коэффициентом расхода ? . Таким образом, для уточнения в формулу для определения расхода G m вместо ? следует Рисунок 3

ввести ? .

На практике приходится рассчитывать расход воздуха не для отверстия с тонкими стенками, а для различных видов дросселирующих сопротивлений, имеющих более сложную конфигурацию, В этих случаях коэффициент расхода определяют экспериментально, и он является поправочным коэффициентом, учитывающим геометрию дросселя.

Расход (рисунок 3) имеет максимальное значение при

.

Показатель адиабаты k для воздуха равен 1,4, следовательно, ? кр = 0,528.

Момент равенства ?=? кр соответствует в канале дросселирующего сопротивления скорости течения воздуха, равной скорости звука. Экспериментально показано, что если в дальнейшем понижать давление р 2 , то расход G m -давление в полости до подводящего отверстия; р i -1 -давление в полости за подводящим отверстием; G кр - критическое значение массового расхода, определяемое по формуле

,

где d -диаметр подводящего отверстия.

Максимальная погрешность при таком определении расхода равна 3,4%.

Список литературы

1. Электропневмоавтоматика в производственных процессах: Учебное пособие; под редакцией Е.В. Пашкова. – 2-е издание, переработанное и дополненное. – Севастополь: издательство СевНТУ, 2003. -496с., ил.

2. Расчет пневмоприводов: Справочное пособие. Е.В. Герц, Г.В. Крейнин. – Москва: «Машиностроение», 1975. -274с.

Шумовые характеристики

В зависимости от физической природы шумы могут быть:

· механического происхождения , возникающие при вибрации поверхностей машин и оборудования, а также при одиночных или периодических ударах в сочленениях деталей или конструкциях в целом;

· аэродинамического происхождени я , возникающие вследствие происходящих в газах процессов (вихревых процессов, колебания рабочей среды, вызываемых вращением лопаточных колес, пульсации давления при движении в воздухе тел с большими скоростями; истечения сжатого воздуха, пара или газа и др.);

· электромагнитного происхождения , возникающие вследствие колебаний элементов (ротора, статора, сердечника, трансформатора и др.) электромеханических устройств под действием переменных магнитных полей;

· гидродинамического происхождения , возникающие вследствие происходящих в жидкостях процессов (гидравлических ударов, кавитации, турбулентности потока и др.).

В условиях эксплуатации, как правило, несложно определить, какой именно источник вызывает повышенный шум. Если, например, в жилой дом проникает шум от одновременно работающих компрессорной и вентиляторной установок рядом расположенного предприятия, то последовательным выключением этих установок и измерением шума каждой из них можно выявить основной источник шума.

Для выполнения акустического расчета прежде всего необходимо знать основные шумовые характеристики машин:

ü уровни звуковой мощности (УЗМ) на стандартных среднегеометрических частотах октавных полос (L P ):

L р = 10∙ lg P / P 0 ,

где Р – звуковая мощность источника, Вт; P 0 – исходное значение мощности, равное 10 -12 Вт);

ü показатель направленности излучения шума (G ):

G = 10∙1 g Ф ),

где Ф – фактор направленности излучения шума.

Шумовые характеристики, определяемые в соответствии с ГОСТ 12.1.024 – 81, ГОСТ 12.1.025 – 81 и др., приводятся заводом-изготовителем в технической документации на стационарные машины и оборудование. Для таких распространенных источников шума, как вентиляторные, компрессорные, газотурбинные и другие аэрогазодинамические установки, шумовые характеристики могут быть рассчитаны или определены по справочной литературе /30/.

При отражении звуковых волн, падающих на какую-либо поверхность, в той или иной мере происходит поглощение звуковой энергии, которую несут волны. В результате этого поглощения отраженная волна имеет меньшую амплитуду, чем падающая. Отношение отраженной энергии (E отр ) к падающей (E пад )

β = E отр. / E пад

называется коэффициентом отражения звука ; отношение же поглощенной энергии к падающей коэффициентом поглощения данной поверхности

α = (E пад – E отр.) / E пад .

Между коэффициентами отражения звука и поглощения данной поверхности существует связь, которая описывается соотношением:

α = 1 – β .

При коэффициенте звукопоглощения, равном нулю, вся падающая на конструкцию звуковая энергия отражается без поглощения и, наоборот, падающая энергия полностью поглощается, если коэффициент звукопоглощения равен единице. Коэффициент звукопоглощения конструкции зависит от частоты падающих волн и от угла их падения.

Звукопоглощающую конструкцию можно характеризовать удельным импедан сом звукопоглощающей конструкции являющимся отношением звукового давления (p ) на поверхности конструкции к нормальной составляющей колебательной скорости воздуха (V n ) на этой же поверхности:

Z = p / V n .

Для учета фазовых соотношений давление и скорость берутся здесь в комплексной форме и, таким образом, импеданс является комплексной вели чиной :

Z = R + i X,

где R и X – соответственно действительная (активная) и мнимая (реактивная) составляющие импеданса.

Пористостью материала называется безразмерная величина, равная отношению объема воздушных пор к общему объему материала. При этом учитывается лишь объем сквозных пор; замкнутые поры, не имеющие сообщения с наружным воздухом, не принимают участия в поглощении звука. У применяемых обычно звукопоглощающих материалов пористость лежит в пределах от 0,6 до 1.

Сопротивление продуванию является весьма важной характеристикой пористого материала. Оно определяется из следующего соотношения:

где P – разность воздушных давлений по обе стороны слоя пористого материала, продуваемового потоком воздуха; V – скорость воздушного потока вне материала; h – толщина слоя пористого материала.

Сопротивление продуванию (r ), отнесенное ко всей толщине пористого слоя, называется полным сопротивлением продуванию (r 1 ) и может быть определено как

r 1 = r h .

Полное сопротивление продуванию (r 1 ) находит наибольшее применение при характеристике акустических свойств тонких пористых слоев (например, ткани, сетки и т.п.), у которых относить сопротивление к единице толщины не имеет смысла.

Вентиляторные установки

Шум вентиляторов промышленных предприятий обычно распространяется следующими путями:

ü через воздухозаборное устройство 4 (рис. 5.1, а) воздуховода всасывания 2 (путь I);

ü через выбросное устройство 5 (рис. 5.1, б) воздуховода нагнетания 3 (путь II);

ü через корпус радиального вентилятора 1 (рис. 5.1, а, путь III) и выбросное или воздухозаборное устройства (пути II и I).

Возможно также излучение шума открытым входным или выходным патрубками радиального вентилятора и осевым вентилятором непосредственно в атмосферу. Шум вентиляторных установок часто превышает допустимые уровни в широком диапазоне частот. В каждом из этих случаев октавные УЗМ могут быть рассчитаны по соответствующим формулам. Например, октавные УЗМ шума, излучаемого вентилятором в воздуховод всасывания или нагнетания, определяют по формуле:

L p = L + 20 lg P в + 10 lg Q + δ – ΔL 1 + ΔL 2 – 20 ,

где L – критерий шумности, дБ, зависящий от типа и конструкции вентилятора, значение которого для сторон всасывания и нагнетания следует принимать по данным /30, 31/; Р в – полное давление, создаваемое вентилятором, Па; Q – объемный расход воздуха вентилятора, м 3 /с; δ – поправка на режим работы вентилятора, принимаемая в зависимости от его КПД, равной от 0 до 4 дБ; L 1 – поправка, учитывающая распределение звуковой мощности вентилятора по октавным полосам частот; Δ L 2 – поправка, учитывающая акустическое влияние присоединения воздуховода к вентилятору.


Поправки Δ L 1 и Δ L 2 могут быть определены по данным /30/.

Для осевых вентиляторов УЗМ шума на всасывании и нагнетании ввиду симметрии потока могут быть приняты одинаковыми. Уровень шума электродвигателя, клиноременного привода и подшипников при их исправном состоянии значительно ниже шума вентилятора и его можно не учитывать.

Значения УЗМ справедливы при условии плавного подвода воздуха к входному патрубку, что обеспечивается наличием плавного коллектора или прямого участка воздуховода длиной не менее трех его гидравлических диаметров (D г ):

D г = 4F / П ,

здесь F – площадь воздуховода, м 2 , П – его периметр, м.

При работе радиального вентилятора с открытыми входным или выходным патрубками к излучаемому через них шуму добавляется шум, излучаемый через корпус. Суммарный УЗМ находят по известному правилу сложения уровней. Для вентиляторов специального назначения, в частности общеобменной вентиляции шахт, рудников, транспортных тоннелей, УЗМ могут быть определены по измерениям, проведенным на моделях этих вентиляторов (для проектируемых машин) или по данным литературы (для эксплуатируемых машин).

Компрессорные станции

При работе стационарных компрессорных станций проникновение шума в окружающую среду происходит через отверстия всасывающих и выхлопных воздуховодов, а в передвижных станциях, кроме того, имеется еще шум двигателя и корпусной шум. Нужно заметить, что компрессорные станции наряду с вентиляторными установками являются самыми распространенными источниками шума. Уровни звуковой мощности шума, излучаемого в окружающую среду стационарными компрессорами и турбокомпрессорами, определяют по справочной литературе /15/.

Шум расположенных в жилых застройках передвижных компрессорных станций (ПКС), в которых имеется большое количество источников шума, принято характеризовать не уровнем звуковой мощности, а уровнем звука на определенном (1…7 м) расстоянии от станции.

Газовые струи

Интенсивный шум в окружающей среде может создаваться при испытаниях турбореактивных двигателей (ТРД), при сбросе сжатого воздуха. Источником шума в этих случаях является высокоскоростная выхлопная струя, общий уровень звуковой мощности (L P общ ) которой можно определить по формуле:

L P общ = 80 lg V c + 20 lg ρ с + 10 lg F c – K,

где V c – скорость истечения газа (воздуха) из сопла, м/с; ρ с – плотность струи в выходном сечении сопла; F c – площадь сечения сопла, м 2 ; К – величина, зависящая от температуры струи.

При испытаниях ТРД излучение шума происходит несколькими путями: из выхлопной шахты испытательного бокса 1 (рис. 5.2), из шахт подсоса 2 и всасывания 3, а также через проводящую трубу 4. В шахты подсоса и всасывания поступает часть звуковой энергии, излучаемой в помещение бокса выхлопной струей.

Октавные УЗМ шума, излучаемого в выхлопную шахту, определяют по формуле:

L p = L P общ + Δ L P .

Здесь Δ L P – разность между общим УЗМ и рассматриваемой октавной полосой со среднегеометрической частотой f, значение которой определяется в зависимости от безразмерного параметра – числа Струхаля:

Sh = fd / v c ,

где d c – диаметр сопла, м.

Необходимо отметить, что при расчете шума ТРД (особенно двухконтурных с большой степенью двухконтурности), проникающего в шахту всасывания, наряду с выхлопной струей нужно учитывать и шум компрессора.

Источники шума в жилых и общественных зданиях

Шумы, проникающие в помещение, могут быть внешними и внутренними . Внутренние шумы, возникающие в самих зданиях, могут быть подразделены на бытовые и механические , связанные с работой инженерного и санитарно-технического оборудования (лифтов, вентиляторов, насосов и т.п.). Бытовые шумы создаются проживающими в доме людьми: громкий разговор, крики и плач детей, пение, игра на музыкальных инструментах. Уровни шума вблизи этих источников могут достигать довольно высоких значений: звучание очень громкой музыки создает уровень шума в 80…90 дБ, громкий разговор и плач детей – 70…80 дБ, разговор средней громкости – 60…65 дБ.

При разработке средств защиты от шума, прежде всего, следует выяснить его вид. Различают два вида шумов – воздушный и структурный . Воздушный шум распространяется в воздухе от источника возникновения до места наблюдения, структурный шум излучается поверхностями колеблющихся конструкций стен, перекрытий, перегородок зданий в звуковом диапазоне частот 20…20 000 Гц.

От наружного источника 1 (рис. 5.3) воздушный шум проникает в помещения через закрытые или открытые окна, форточки, а также стены (в меньшей степени); вибрации передаются по грунту или трубопроводам, идущим к строительным конструкциям, колебания которых вызывает появление структурного шума. От внутреннего источника 2 воздушный шум попадает в помещения через стены и перекрытия, воздуховоды, а также через проемы, щели и т.п.; вибрации передаются основанию, трубопроводам насосных и воздуховодам вентиляционных установок, вызывая возникновения структурного шума.

Необходимость проведения мероприятий по снижению шума, производимого эксплуатируемыми источниками, определяется на основании измерений:

ü уровня звукового давления (L );

ü эквивалентного уровня звука (L A экв );

ü максимального уровня звука (L A max )

и сравнением с допустимыми по нормам.

Для проектируемых объектов необходимость таких мероприятий может быть определена только на основании акустического расчета, включающего:

1) выявление источников шума и определение их шумовых характеристик;

2) выбор расчетных точек (РТ) акустического расчета и определение для них допустимых УЗД;

3) определение ожидаемых уровней звукового давления (УЗД) в расчетных точках до осуществления мероприятий по снижению шума

4) определение требуемого снижения УЗД в расчетных точках;

5) выбор мероприятий для обеспечения требуемого снижения;

6) расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок и т.п.).

Насадком называется присоединенная к отверстию в стенке трубка, длина которой составляет три-четыре диаметра. Различают следующие основные типы насадков (рис. 5.4):

цилиндрические (внешние - а и внутренние - б );

конические (сходящиеся - в и расходящиеся - г )

коноидальные (с закругленными очертаниями по форме сжатия струи - д ).

Большое влияние на скорость истечения и расход из насадков оказывает форма входной кромки. Например, плавное закругление на входе может полностью устранить внутреннее сжатие струи и вызвать увеличение скорости и расхода.

Рис. 5.4. Истечение жидкости через насадки

Внешний цилиндрический насадок (рис. 5.5). Струя жидкости при выходе в насадок сжимается, после чего вновь расширяется и заполняет все сечение насадка. В промежутке между сжатым сечением и стенками насадка образуется вихревая зона. Так как струя выходит из насадка полным сечением (без сжатия), то коэффициент сжатия струи e= 1, а коэффициент расхода m = ej = j, т.е. для насадка коэффициенты расхода и скорости имеют одинаковую величину.

Составляя уравнение Бернулли для сечений I-I и II-II, взятых на свободной поверхности жидкости в сосуде и в месте выхода струи из насадка, и рассуждая точно так же, как и в случае истечения жидкости из отверстия в тонкой стенке, получаем следующие расчетные формулы:

для скорости истечения из насадка

(5.9)

для расхода при истечении из насадка

. (5.10)


Рис. 5.5. Внешний цилиндрический насадок

Коэффициент скорости насадка j можно определить, зная величину коэффициента сопротивления насадка z н. Для этого определим потери напора при истечении жидкости через насадок, которые в данном случае обуславливаются сопротивлением отверстия в тонкой стенке и внезапным расширением струи. Что касается потерь напора по длине насадка, то их величина незначительна и ими можно пренебречь.

Подставляя

получаем ,

где выражение в скобках представляет собой z н.

Зная, что z т.с = 0,06, определим z в.р по формуле (4.42),

получим .

Таким образом, коэффициент скорости для насадка будет равен

.

Следовательно, и коэффициент расхода насадка m= 0,82.

В случае истечение жидкости под уровень формулы для скорости и расхода принимают вид:

где - разность уровней или напоров воды.

Сопоставляя значение коэффициентов истечения для насадков и отверстий в тонкой стенке, видно, что расход жидкости из цилиндрического насадка больше, чем из отверстия в тонкой стенке:

,

а скорость значительно меньше, чем при истечении из отверстия

.

Внешний цилиндрический насадок, увеличивая расход жидкости, вместе с тем дает и значительное уменьшение скорости истечения. Объясняется это тем, что в вихревой зоне насадка, после того как воздух, отжатый струей, будет увлечен потоком наружу, образуется вакуум. Наличие пониженного давления в области сжатого сечения струи порождает фактор подсасывания жидкости, который оказывает более сильное влияние на расход, чем дополнительное сопротивление вследствие трения по длине и расширения струи в трубке. При значительной длине трубки эффект подсасывания не компенсирует дополнительных потерь, благодаря чему расход из трубке станет равным или меньше, чем при свободном истечении из отверстия в тонкой стенке. Хотя при этом потери напора растут, их влияние на уменьшение скорости во входном сечении меньше, чем влияние увеличения живого сечения струи.

Для определения величины вакуума в сжатом сечении струи (см. рис. 5.5) составим уравнение Бернулли для двух сечений: поверхности воды в сосуде I-I и сжатого сечения С-С:

.

Так как p l - p c есть величина вакуума p вак, Н с = 0; V 1 = 0;a l = a с = 1, получим

.

Выразим скоростной напор в сжатом сечении через напор перед насадком Н из формулы (5.9):

а из уравнения неразрывности найдем .

Тогда .

Подставляя полученное выражение в исходное уравнение, получаем:

(5.11)

Таким образом, при постоянных параметрах j, ζ т.с и ε вакуум в насадке (в сжатом сечении) пропорционален напору.

Подставив числовые значения коэффициента в формулу (5.11), получим значения вакуума при истечении жидкости в атмосферу:

.

Максимальная величина вакуума, равная 10 м, наступает при напоре

.

При понижении абсолютного давления в насадке до давления насыщенных паров возникает кавитационный режим истечения. Выделяющиеся внутри жидкости пары будут заполнять струю, которая начнет терять свою сплошность, в результате уменьшится расход жидкости.

Дальнейшее увеличение напора приводит к отрыву струи жидкости от внутренних стенок насадка (рис. 5.6). При этом понижается коэффициент расхода и, следовательно, пропускная способность насадка. Насадок работает как отверстие в тонкой стенке. Такое явление называется срывом истечения через насадок .

Внутренний цилиндрический насадок (рис. 5.7). В этом насадке явление протекает, как и во внешнем насадке. Однако вследствие большого сжатия струи на входе коэффициенты скорости и расхода для внутреннего насадка меньше, чем внешнего, m = j = 0,71.

Рис. 5.6. Истечение через насадок при срыве

Рис. 5.7. Внутренний цилиндрический насадок

При малой длине внутреннего цилиндрического насадка (l < 1,5d ) струя вытекает из него, не касаясь стенок. В этом случае j= 0,98; e = 0,5; m = 0,49.

Гидравлические сопротивления во внутреннем насадке больше, чем во внешнем, следовательно, в нем меньше вакуум и расход жидкости. Поэтому, как правило, внешние насадки предпочитают внутренним, ввиду меньших гидравлических сопротивлений.

Конический сходящийся насадок (рис. 5.8). В коническом сходящемся насадке явление внутреннего сжатия сказывается меньше, чем в цилиндрическом насадке, но зато появляется сжатие струи по выходе из насадка.

Рис. 5.8. Конический сходящийся насадок

Это влечет за собой, с одной стороны, увеличение коэффициента скорости, а с другой - уменьшение коэффициента сжатия. Так как разность между сжатым сечением и расширенной частью струи в коническом сходящемся насадке меньше, чем в цилиндрическом, происходит уменьшение потерь напора на расширение струи и соответственно увеличение расхода. Однако это имеет место до значения угла конусности q = 13º. В последующем вследствие чрезмерного сжатия струи потери возрастают и расход уменьшается.

В среднем при углах конусности 12-14º можно принимать:

e = 0,98;j = 0,96;m = 0,94.

Рис. 5.9. Конический расходящийся насадок

Конический расходящийся насадок (рис. 5.9). Расширение струи в таком насадке происходит более резко, чем в цилиндрическом. Поэтому его гидравлическое сопротивление больше, а коэффициент скорости меньше. Вследствие того что в расходящемся насадке потери напора от сжатого сечения к расширенному значительно больше, чем в коническом сходящемся и цилиндрическом, происходит снижение коэффициента расхода. Наибольшей пропускной способностью он обладает при углах конусности 6-8º.

Конические расходящиеся насадки (диффузоры) нашли широкое применение в насосах, гидроэлеваторах и т.п., где требуется довести до минимума кинетическую энергию в отходящем потоке.

При угле конусности 5º для конического расходящегося насадка с округленной входной кромкой можно принять , .

Следует отметить, что этот коэффициент расхода относится к большему (выходному) сечению насадка. Если же отнести этот коэффициент к входному отверстию, то он окажется значительно больше и может достигнуть 2-3.

Коноидальный насадок (см. рис. 5.4, д ). Цилиндрический насадок, имеющий плавный вход по форме струи, выходящий из отверстия, называется коноидальным. Истечение жидкости через такой насадок происходит при наименьшем сопротивлении (), что способствует получению дальнобойных струй с большой начальной скоростью полета. Однако из-за сложности изготовления такие насадки в пожарном деле применяются недостаточно широко.

Значения коэффициентов для различных отверстий и насадков, отнесенных к выходному сечению, приведены в табл. 5.1

Таблица 5.1

Особенности истечения из некруглых отверстий. В зависимости от формы отверстия, через которое происходит истечение, форма поперечного сечения струи имеет самый разнообразный вид (рис. 5.10). Например, поперечное сечение струи, вытекающее через треугольное отверстие, приобретает форму с тремя тонкими ребрами: при истечении через квадратное отверстие - крестообразную и через круглое - эллиптическую. Изменение формы струи происходит под действием сил поверхностного натяжения. Это явление называется инверсией струи . В дальнейшем форма поперечного сечения по длине струи не остается постоянной, она под действием сил поверхностного натяжения все время претерпевает соответствующее изменение. В результате нарушается сплошность струи и она распадается на отдельные капли.

Рис. 5.10. Инверсия струи:

а - форма отверстий; б - форма сечения струи

Исходя из сказанного, следует, что для получения дальнобойных струй необходимо использовать насадки с круглым сечением, в которых действие сил поверхностного натяжения взаимно уравновешивается. Для предохранения выходных кромок насадков от различного рода повреждений предусматриваются специальные кольцевые выточки.

Расчетные формулы для расхода и напора из насадков. Формулу для определения расхода можно представить в виде

где называется проводимостью насадка .

Напор перед насадком определяется из выражения

где сопротивление насадка .

Значение и насадков при для определения расходов , л/с, и напора , м, для пожарных стволов приводится в табл. 5.2.

Таблица 5.2

Диаметр насадка, мм s p
13 2,89 0,588
16 1,26 0,891
19 0,634 1,26
22 0,353 1,68
25 0,212 2,17
28 0,135 2,72
32 0,079 3,56
38 0,04 5,00
50 0,013 8,77
65 0,004 14,74

Шум от неоднородности потока (Гц) носит дискретный характер, причем в спектре обычно имеется несколько составляющих (гармоник):

f=m(nz/60), (16)

где т — номер составляющей (т = 1, 2, 3, ...); п — скорость вращения, об/мин; z — число лопаток колеса.

Борьба с шумом от неоднородности потока ведется по линии улучшения аэродинамических характеристик машин.

В спектрах шуматурбомашин, например вентиляторов, можно различить несколько областей (рис. 44, а):

Рис. 44. Спектры шума источников аэродинамического происхождения:

а — вентилятора; б — мотоциклетного двигателя; в — газотурбинной энергетической установки; 1, 2 — шум выпуска и впуска; 3 — корпусной шум; 4 — шум при прокрутке двигателя

1) область частот механического шума (I), кратных об/с;

2) область шума от неоднородности потока (II с f1, f2, f и т. д.);

3) область вихревого шума (III).

Уровень звуковой мощности вентиляторного шума (дБ) зависит от полного давления Н (кгс/м2) и производительности вентилятора Q (м3/с), а также от критерия шумности т, характеризующего шумность данного типа вентиляторов (т = 35-7-50 дБ):

LP = τ + 25 lgH+10lgQ.

В двигателях внутреннего сгорания основными источниками шума являются шум систем выпуска и впуска, а также шум, излучаемый корпусом двигателя.

Выхлоп двигателей создает наибольший шум, интенсивность которого и спектр зависят от числа выхлопов в секунду, продолжительность выхлопа, от конструкции системы выхлопа и от мощности двигателя. Шум впуска и корпусный шум по своей интенсивности ниже шума выхлопа (рис. 44, б).

В спектрах шума двигателей присутствует значительное количество дискретных составляющих, кратных частоте f, равной числу выхлопов в секунду. Например, для двухтактного двигателя fi = in\60, для четырехтактного fi = in(2*60) (i - число цилиндров; п — скорость вращения коленчатого вала, об/мин).

Интенсивными аэродинамическими шумами характеризуются компрессоры, воздуходувки, пневматические двигатели и другие подобные машины.

Источниками шума компрессорных установок являются выходящие в атмосферу всасывающие и выхлопные (для сброса воздуха) воздуховоды, корпуса компрессоров, стенки воздуховодов, проходящих по помещениям.

В зависимости от конструкции компрессора спектр его шума имеет различный характер. Так, шум поршневых компрессоров носит низкочастотный характер, обусловленный числом сжатия в секунду. Шум турбокомпрессоров, наоборот, высокочастотен, что связано с природой образующегося шума (вихревой шум и шум от неоднородности потока).

В настоящее время большое распространение получили газотурбинные энергетические установки (ГТУ). По своей природе шум в ГТУ делится на шумы аэродинамического (газодинамического) и механического происхождения, причем наибольшее значение имеют аэродинамический шум, излучаемый всасывающим трактом ГТУ. Основным источником этого шума является компрессор, при работе которого уровни суммарного шума достигают 135—145 дБ. В спектре шума всасывания (рис. 44, в) преобладают высокочастотные дискретные составляющие. Основная частота первой из них определяется по формуле (16).

Аэродинамический шум в источнике ГТУ может быть снижен: увеличением зазора между лопаточными решетками; подбором оптимального соотношения чисел направляющих и рабочих лопаток; облагораживанием проточной части компрессоров и турбин и т. п.

Шум механического происхождения (вибрации системы роторов, подшипников, элементов редукторов и т. д.), являющийся превалирующим в машинном отделении, может быть ослаблен за счет проведения мероприятий^ рассмотренных выше для механических шумов.

При вращательном движении тел, например винтов самолета, возникает так называемый шум вращения. Он образуется вследствие того, что тело периодически порождает пульсации давления в каждой точке среды, воспринимаемые как шум.

Основную частоту шума вращения винта, имеющего z лопастей, nppi скорости вращения п (об/мин) определяют по формуле (16). Частоты остальных гармоник кратны этой основной частоте, т. е. f2 = 22; f3 = 3f1 и т. д.

Звуковая мощность шума вращения также зависит от окружной скорости.

В различных турбомашинах (вентиляторах, компрессорах и т. д.) шум вращения значительно ниже по интенсивности, чем вихревой шум и шум от неоднородности, и поэтому может не учитываться.

Одним из самых мощных источников шума является свободная струя (см. рис. 43, в). Шум струи создается в результате турбулентного перемешивания частиц воздуха или газа, имеющих большую скорость истечения, с частицами окружающего воздуха, скорость которых меньше. Эти шумы являются преобладающими при работе реактивных двигателей, при выбросе сжатого воздуха или пара в атмосферу.

Звуковая мощность струи (Вт) зависит главным образом от скорости истечения vc, а также от диаметра отверстия (сопла) Dc и плотности воздуха или газов р:

где к — коэффициент подобия.

Снижение шума струи в источнике представляет большую сложность. Уменьшением градиента скорости в струе, что сделано, в частности, в двухконтурных авиационных двигателях, достигается снижение шума на 5 дБ.

Установка на срезе сопла различных насадок, действие которых основано на трансформации спектра шума (перевод спектра в высокочастотную область и даже в ультразвук), снижает шум на 8—12 дБ. Нужно отметить, что такие насадки могут ухудшать рабочие характеристики струи из-за высокого сопротивления.

В потоках, движущихся со сверхзвуковой скоростью, возникают аэродинамические шумы, обусловленные появлением скачков уплотнения (ударных волн). При движении тела со сверхзвуковой скоростью возникает явление звукового удара или хлопка, например, при полете сверхзвуковых самолетов. При истечении газа в атмосферу со сверхзвуковой скоростью происходят колебания скачков с возникновением резкого дискретного шума.

В большинстве случаев меры по ослаблению аэродинамических шумов в источнике оказываются недостаточными, поэтому дополнительное, а часто и основное снижение шума достигается путем звукоизоляции источника и установки глушителей.

В насосах источником шума является кавитация жидкости, возникающая у поверхности лопастей при высоких окружных скоростях и недостаточном давлении на всасывании.

Меры борьбы с кавитационным шумом — это улучшение гидродинамических характеристик насосов и выбор оптимальных режимов их работы.

Электромагнитные шумы. Шумы электромагнитного происхождения возникают в электрических машинах и оборудовании. Причиной этих шумов является главным образом взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве магнитных полей, а также пондеромоторные силы, вызываемые взаимодействием магнитных полей, создаваемых токами.

Снижение электромагнитного шума осуществляется путем конструктивных изменений в электрических машинах, например, путем изготовления скошенных пазов якоря ротора. В трансформаторах необходимо применять более плотную прессовку пакетов, использовать демпфирующие материалы.

При работе электрических машин возникает также аэродинамический шум (в результате вращения ротора в газовой среде и движения воздушных потоков внутри машины) и механический шум, обусловленный вибрацией машины из-за неуравновешенности ротора, а также от подшипников и щеточного контакта. Хорошая притирка щеток может уменьшить шум на 8—10 дБ.

Изменение направленности излучения шума. В ряде случаев величина показателя направленности (ПН) достигает 10—15 дБ, что необходимо учитывать при проектировании установок с направленным излучением, соответствующим образом ориентируя эти установки по отношению к рабочим местам. Например, выхлоп сжатого воздуха, отверстие воздухозаборной шахты вентиляционной или компрессорной установки должны располагаться так, чтобы максимум излучаемого шума был направлен в противоположную сторону от рабочего места или от жилого дома.

Рациональная планировка предприятий и цехов, акустическая обработка помещений. Как видно из выражения (12), шум на рабочем месте может быть уменьшен увеличением площади S, что может быть достигнуто увеличением расстояния от источника шума до расчетной точки.

Поделиться: