Системы уравнений как. Системы уравнений с двумя переменными, способы решения

Более надежные, чем графический метод, который рассмотрели в предыдущем параграфе.

Метод подстановки

Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим алгоритмом мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4).

Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.

1. Выразить у через х из одного уравнения системы.
2. Подставить полученное выражение вместо у в другое уравнение системы.
3. Решить полученное уравнение относительно х.
4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.
5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.


4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если то
5) Пары (2; 1) и решения заданной системы уравнений.

Ответ: (2; 1);

Метод алгебраического сложения

Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере.

Пример 2. Решить систему уравнений


Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения:
Вычтем второе уравнение системы из ее первого уравнения:


В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой:


Эту систему можно решить методом подстановки. Из второго уравнения находим Подставив это выражение вместо у в первое уравнение системы, получим


Осталось подставить найденные значения х в формулу

Если х = 2, то

Таким образом, мы нашли два решения системы:

Метод введения новых переменных

С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.

Пример 3. Решить систему уравнений

Введем новую переменную Тогда первое уравнение системы можно будет переписать в более простом виде: Решим это уравнение относительно переменной t:


Оба эти значения удовлетворяют условию , а потому являются корнями рационального уравнения с переменной t. Но значит, либо откуда находим, что х = 2у, либо
Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения:

х = 2 у; у - 2х.

Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х 2 - у 2 = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух систем уравнений :

Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений:

Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим


Так как х = 2у, то находим соответственно х 1 = 2, х 2 = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений:

Снова воспользуемся методом подстановки : подставим выражение 2х вместо у во второе уравнение системы. Получим


Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы.

Ответ: (2; 1); (-2;-1).

Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. Первый вариант: вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.Второй вариант: вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4.

Пример 4. Решить систему уравнений

Введем две новые переменные:

Учтем, что тогда

Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и b:


Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и b мы получили одно решение:

Возвращаясь к переменным х и у, получаем систему уравнений


Применим для решения этой системы метод алгебраического сложения:


Так как то из уравнения 2x + y = 3 находим:
Таким образом, относительно переменных х и у мы получили одно решение:


Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных . Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений.

Определение.

Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.

Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.

Графический метод решения систем уравнений

Мы уже с вами научились решать системы уравнений такими распространенными и надежными способами, как метод подстановки, алгебраического сложения и введения новых переменных. А теперь давайте с вами вспомним, метод, который вы уже изучали на предыдущем уроке. То есть давайте повторим, что вы знаете о графическом методе решения.

Метод решения систем уравнения графическим способом представляет собой построение графика для каждого из конкретных уравнений, которые входят в данную систему и находятся в одной координатной плоскости, а также где требуется найти пересечения точек этих графиков. Для решения данной системы уравнений являются координаты этой точки (x; y).

Следует вспомнить, что для графической системы уравнений свойственно иметь либо одно единственное верное решение, либо бесконечное множество решений, либо же не иметь решений вообще.

А теперь на каждом из этих решений остановимся подробнее. И так, система уравнений может иметь единственное решение в случае, если прямые, которые являются графиками уравнений системы, пересекаются. Если же эти прямые параллельны, то такая система уравнений абсолютно не имеет решений. В случае же совпадения прямых графиков уравнений системы, то тогда такая система позволяет найти множество решений.

Ну а теперь давайте с вами рассмотрим алгоритм решения системы двух уравнений с 2-мя неизвестными графическим методом:

Во-первых, вначале мы с вами строим график 1-го уравнения;
Вторым этапом будет построение графика, который относится ко второму уравнению;
В-третьих, нам необходимо найти точки пересечения графиков.
И в итоге мы получаем координаты каждой точки пересечения, которые и будут решением системы уравнений.

Давайте этот метод рассмотрим более подробно на примере. Нам дана система уравнений, которую необходимо решить:


Решение уравнений

1. Вначале мы с вами будем строить график данного уравнения: x2+y2=9.

Но следует заметить, что данным графиком уравнений будет окружность, имеющая центр в начале координат, а ее радиус будет равен трем.

2. Следующим нашим шагом будет построение графика такого уравнения, как: y = x – 3.

В этом случае, мы должны построить прямую и найти точки (0;−3) и (3;0).


3. Смотрим, что у нас получилось. Мы видим, что прямая пересекает окружность в двух ее точках A и B.

Теперь мы с вами ищем координаты этих точек. Мы видим, что координаты (3;0) соответствуют точке А, а координаты (0;−3) соответственно точке В.

И что мы получаем в итоге?

Получившиеся при пересечении прямой с окружностью числа (3;0) и (0;−3), как раз и являются решениями обоих уравнений системы. А из этого следует, что данные числа являются и решениями этой системы уравнений.

То есть, ответом этого решения являются числа: (3;0) и (0;−3).

Рассмотрим вначале случай, когда число уравнений равно числу переменных, т.е. m = n. Тогда матрица системы - квадратная, а ее определитель называют определителем системы.

Метод обратной матрицы

Рассмотрим в общем виде систему уравнений АХ = В с невырожденной квадратной матрицей А. В этом случае существует обратная матрица А -1 . Домножим слева обе части на А -1 . Получим А -1 АХ = А -1 В. Отсюда ЕХ = А -1 В и

Последнее равенство представляет собой матричную формулу для нахождения решения таких систем уравнений. Использование этой формулы получило название метода обратной матрицы

Например, решим этим методом следующую систему:

;

В конце решения системы можно сделать проверку, подставив найденные значения в уравнения системы. При этом они должны обратиться в верные равенства.

Для рассмотренного примера проведем проверку:

Метод решения систем линейных уравнений с квадратной матрицей по формулам Крамера

Пусть n= 2:

Если обе части первого уравнения умножить на a 22 , а обе части второго – на (-a 12), и затем сложить полученные уравнения, то мы исключим из системы переменнуюx 2 . Аналогично можно исключить переменнуюx 1 (умножив обе части первого уравнения на (-a 21), а обе части второго – наa 11). В результате получим систему:

Выражение в скобках есть определитель системы

Обозначим

Тогда система примет вид:

Из полученной системы следует, что если определитель системы 0, то система будет совместной и определенной. Ее единственное решение можно вычислить по формулам:

Если = 0, а 1 0 и/или 2 0, то уравнения системы примут вид 0*х 1 = 2 и/или0*х 1 = 2 . В этом случае система будет несовместной.

В случае, когда = 1 = 2 = 0, система будет совместной и неопределенной (будет иметь бесконечное множество решений), так как примет вид:

Теорема Крамера (доказательство опустим). Если определитель матрицы системыnуравненийне равен нулю, то система имеет единственное решение, определяемое по формулам:

,

где  j - определитель матрицы, получаемой из матрицы А заменой j-го столбца столбцом свободных членов.

Вышеприведенные формулы называют формулами Крамера .

В качестве примера решим этим методом систему, которую до этого решали методом обратной матрицы:

Недостатки рассмотренных методов:

1) существенная трудоемкость (вычисление определителей и нахождение обратной матрицы);

2) ограниченная область применения (для систем с квадратной матрицей).

Реальных экономические ситуации чаще моделируются системами, в которых число уравнений и переменных довольно значительное, причем уравнений больше, чем переменных Поэтому на практике более распространен следующий метод.

Метод Гаусса (метод последовательного исключения переменных)

Этот метод используется для решения системы m линейных уравнений с n переменными в общем виде. Его суть заключается в применении к расширенной матрице системы равносильных преобразований, с помощью которых система уравнений преобразуется к виду, когда ее решения становится легко найти (если они есть).

Это такой вид, в котором левая верхняя часть матрицы системы будет представлять собой ступенчатую матрицу. Этого добиваются с помощью тех же приемов, с помощью которых получали ступенчатую матрицу с целью определения ранга. При этом применяют к расширенной матрице элементарные преобразования, которые позволят получить равносильную систему уравнений. После этого расширенная матрица примет вид:

Получение такой матрицы называют прямым ходом метода Гаусса.

Нахождение из соответствующей системы уравнений значений переменных называют обратным ходом метода Гаусса. Рассмотрим его.

Отметим, что последние (m – r) уравнений примут вид:

Если хотя бы одно из чисел
не равно нулю, то соответствующее равенство будет ложным, а вся система несовместной.

Поэтому для любой совместной системы
. В этом случае последние (m – r) уравнений при любых значениях переменных будут тождествами 0 = 0, и их можно не принимать во внимание при решении системы (просто отбросить соответствующие строки).

После этого система примет вид:

Рассмотрим вначале случай, когда r=n. Тогда система примет вид:

Из последнего уравнения системы можно однозначно найти x r .

Зная x r , из него можно однозначно выразитьx r -1 . Затем из предыдущего уравнения, знаяx r иx r -1 , можно выразитьx r -2 и т.д. доx 1 .

Итак, в этом случае система будет совместной и определенной.

Теперь рассмотрим случай, когда rбазисными (основными), а все остальные –небазисными (неосновными, свободными). Последнее уравнение системы будет иметь вид:

Из этого уравнения можно выразить базисную переменную x r через небазисные:

Предпоследнее уравнение будет иметь вид:

Подставив в него вместо x r полученное выражение, можно будет выразить базисную переменнуюx r -1 через небазисные. И т.д. до переменнойx 1 . Чтобы получить решение системы, можно приравнять небазисные переменные к произвольным значениям и после этого вычислить базисные переменные по полученным формулам. Таким образом, в этом случае система будет совместной и неопределенной (иметь бесконечное множество решений).

Например, решим систему уравнений:

Совокупность базисных переменных будем называть базисом системы. Совокупность столбцов коэффициентов при них тоже будем называтьбазисом (базисными столбцами), илибазисным минором матрицы системы. То решение системы, в котором все небазисные переменные равны нулю, будем называтьбазисным решением .

В предыдущем примере базисным решением будет (4/5; -17/5; 0; 0) (переменные х 3 и х 4 (с 1 и с 2) приравнены к нулю, а базисные переменные х 1 и х 2 рассчитаны через них). Чтобы привести пример небазисного решения, надо приравнять х 3 и х 4 (с 1 и с 2) к произвольным числам, неравным одновременно нулю, и рассчитать через них остальные переменные. Например, при с 1 = 1 и с 2 = 0 получим небазисное решение – (4/5; -12/5; 1; 0). Подстановкой легко убедиться, что оба решения – верные.

Очевидно, что в неопределенной системе небазисных решений может быть бесконечно много. Сколько может быть базисных решений? Каждой строке преобразованной матрицы должна соответствовать одна базисная переменная. Всего в задаче nпеременных, а базисных строк –r. Поэтому число всевозможных наборов базисных переменных не может превысить число сочетаний изnпоr 2 . Оно может быть меньше, чем , потому что не всегда можно преобразовать систему к такому виду, чтобы именно этот набор переменных был базисным.

Что это за вид? Это такой вид, когда матрица, образованная из столбцов коэффициентов при этих переменных, будет ступенчатой, и при этом будет состоять из rстрок. Т.е. ранг матрицы коэффициентов при этих переменных должен быть равенr. Большеrон быть не может, так как число столбцов равноr. Если он окажется меньшеr, то это говорит о линейной зависимости столбцов при переменных. Такие столбцы не могут составить базис.

Рассмотрим, какие еще базисные решения могут быть найдены в рассмотренном выше примере. Для этого рассмотрим всевозможные сочетания из четырех переменных по две базисных. Таких сочетаний будет
, причем одно из них (х 1 и х 2) уже было рассмотрено.

Возьмем переменные х 1 и х 3 . Найдем ранг матрицы коэффициентов при них:

Так как он равен двум, они могут быть базисными. Приравняем небазисные переменные х 2 и х 4 к нулю: х 2 = х 4 = 0. Тогда из формулы х 1 = 4/5 – (1/5)*х 4 следует, что х 1 = 4/5, а из формулы х 2 = -17/5 + х 3 - - (7/5)*х 4 = -17/5 + х 3 следует, что х 3 = х 2 +17/5 = 17/5. Таким образом, мы получим базисное решение (4/5; 0; 17/5; 0).

Аналогично можно получить базисные решения для базисных переменных х 1 и х 4 – (9/7; 0; 0; -17/7); х 2 и х 4 – (0; -9; 0; 4); х 3 и х 4 – (0; 0; 9; 4).

Переменные х 2 и х 3 в этом примере нельзя взять в качестве базисных, так как ранг соответствующей матрицы равен единице, т.е. меньше двух:

.

Возможен и другой подход к определению того, можно или нет составить базис из некоторых переменных. При решении примера в итоге преобразования матрицы системы к ступенчатому виду она приняла вид:

Выбирая пары переменных, можно было рассчитать соответствующие миноры этой матрицы. Легко убедиться, что для всех пар, кроме х 2 и х 3 , они не равны нулю, т.е. столбцы линейно независимы. И только для столбцов при переменных х 2 и х 3
, что говорит об их линейной зависимости.

Рассмотрим еще один пример. Решим систему уравнений

Итак, уравнение, соответствующее третьей строке последней матрицы, противоречиво - оно привелось к неверному равенству 0 = -1, следовательно, данная система несовместна.

Метод Жордана-Гаусса 3 представляет собой развитие метода Гаусса. Суть его состоит в том, что расширенную матрицу системы преобразуют к виду, когда коэффициенты приrпеременных образуют единичную матрицу с точностью до перестановки строк или столбцов 4 (гдеr– ранг матрицы системы).

Решим этим методом систему:

Рассмотрим расширенную матрицу системы:

В этой матрице выберем единичный элемент. Например, коэффициент при х 2 в третьем ограничении 5 . Добьемся, чтобы в остальных строках в этом столбце стояли нули, т.е. сделаем столбец единичным. В процессе преобразований будем называть этотстолбец разрешающим (ведущим, ключевым). Третье ограничение (третьюстроку ) тоже будем называтьразрешающей . Самэлемент , который стоит на пересечении разрешающих строки и столбца (здесь это единица), тоже называютразрешающим .

В первой строке сейчас стоит коэффициент (-1). Чтобы получить на его месте ноль, умножим третью строку на (-1) и вычтем результат из первой строки (т.е. просто сложим первую строку с третьей).

Во второй строке стоит коэффициент 2. Чтобы получить на его месте ноль, умножим третью строку на 2 и вычтем результат из первой строки.

Результат преобразований будет иметь вид:

Из этой матрицы хорошо видно, что одно из первых двух ограничений можно вычеркнуть (соответствующие строки пропорциональны, т.е. эти уравнения следуют друг из друга). Вычеркнем, например, второе:

Итак, в новой системе два уравнения. Получен единичный столбец (второй), причем единица здесь стоит во второй строке. Запомним, что второму уравнению новой системы у нас будет соответствовать базисная переменная х 2 .

Выберем базисную переменную для первой строки. Это может быть любая переменная, кроме х 3 (потому что при х 3 в первом ограничении стоит нулевой коэффициент, т.е. набор переменных х 2 и х 3 здесь базисным быть не может). Можно взять первую или четвертую переменную.

Выберем х 1 . Тогда разрешающим элементом будет 5, и обе части разрешающего уравнения придется разделить на пять, чтобы получить в первом столбце первой строки единицу.

Добьемся, чтобы в остальных строках (т.е. во второй строке) в первом столбце стояли нули. Так как сейчас во второй строке стоит не ноль, а 3, надо вычесть из второй строки элементы преобразованной первой строки, умноженные на 3:

Из полученной матрицы можно непосредственно извлечь одно базисное решение, приравняв небазисные переменные к нулю, а базисные – к свободным членам в соответствующих уравнениях: (0,8; -3,4; 0; 0). Можно также вывести общие формулы, выражающие базисные переменные через небазисные: х 1 = 0,8 – 1,2х 4 ; х 2 = -3,4 + х 3 + 1,6х 4 . Эти формулы описывают все бесконечное множество решений системы (приравнивая х 3 и х 4 к произвольным числам, можно вычислить х 1 и х 2).

Отметим, что суть преобразований на каждом этапе метода Жордана-Гаусса заключалась в следующем:

1) разрешающую строку делили на разрешающий элемент, чтобы получить на его месте единицу,

2) из всех остальных строк вычитали преобразованную разрешающую, умноженную на тот элемент, который стоял в данной строке в разрешающем столбце, чтобы получить на месте этого элемента ноль.

Рассмотрим еще раз преобразованную расширенную матрицу системы:

Из этой записи видно, что ранг матрицы системы А равен r.

В ходе проведенных рассуждений мы установили, что система будет совместной тогда и только тогда, когда
. Это означает, что расширенная матрица системы будет иметь вид:

Отбрасывая нулевые строки, мы получим, что ранг расширенной матрицы системы тоже равен r.

Теорема Кронекера-Капелли . Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы.

Вспомним, что ранг матрицы равен максимальному числу ее линейно независимых строк. Из этого следует, что если ранг расширенной матрицы меньше числа уравнений, то уравнения системы линейно зависимы, и одно или несколько из них могут быть исключены из системы (поскольку являются линейной комбинацией остальных). Система уравнений будет линейно независимой лишь в том случае, если ранг расширенной матрицы равен числу уравнений.

При этом для совместных систем линейных уравнений можно утверждать, что если ранг матрицы равен числу переменных, то система имеет единственное решение, а если он меньше числа переменных, то система неопределенная и имеет бесконечно много решений.

1Например, пусть в матрице пять строк (исходный порядок строк – 12345). Надо поменять вторую строку и пятую. Чтобы вторая строка попала на место пятой, «сдвинулась» вниз, последовательно три раза поменяем соседние строки: вторую и третью (13245), вторую и четвертую (13425) и вторую и пятую (13452). Затем, чтобы пятая строка попала на место второй в исходной матрице, надо «сдвинуть» вверх пятую строку путем только двух последовательных перемен: пятой и четвертой строк (13542) и пятой и третьей (15342).

2Числом сочетаний из n по r называют число всех различных r–элементных подмножеств n–элементного множества (различными множествами считаются те, которые имеют различный состав элементов, порядок отбора при этом не важен). Его вычисляют по формуле:
. Напомним смысл знака “!” (факториал):
0!=1.)

3Поскольку этот метод более распространен, чем рассмотренный ранее метод Гаусса, и по своей сути представляет собой сочетание прямого и обратного хода метода Гаусса, его тоже иногда называют методом Гаусса, опуская первую часть названия.

4Например,
.

5Если бы в матрице системы не было единиц, то можно было бы, например, разделить обе части первого уравнения на два, и тогда первый коэффициент стал бы единичным; или т.п.

На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.

Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени : без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.

В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:

Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения

Но как бы ни обозначались переменные, принципы, методы и способы решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.

Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::

– Решение системы линейных уравнений методом подстановки («школьный метод») ;
– Решение системы методом почленного сложения (вычитания) уравнений системы ;
– Решение системы по формулам Крамера ;
– Решение системы с помощью обратной матрицы ;
– Решение системы методом Гаусса .

С системами линейных уравнений все знакомы из школьного курса математики. По сути дела, начинаем с повторения.

Решение системы линейных уравнений методом подстановки

Данный метод также можно назвать «школьным методом» или методом исключения неизвестных. Образно говоря, его еще можно назвать «недоделанным методом Гаусса».

Пример 1


Здесь у нас дана система из двух уравнений с двумя неизвестными. Обратите внимание, что свободные члены (числа 5 и 7) расположены в левой части уравнения. Вообще говоря, без разницы, где они находятся, слева или справа, просто в задачах по высшей математике нередко они расположены именно так. И такая запись не должна приводить в замешательство, при необходимости систему всегда можно записать «как обычно»: . Не забываем, что при переносе слагаемого из части в часть у него нужно поменять знак.

Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти множество её решений. Решение системы представляет собой набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений) .Не тушуйтесь, это общее определение =) У нас же будет всего лишь одно значение «икс» и одно значение «игрек», которые удовлетворяют каждому уравнению с-мы.

Существует графический метод решения системы, с которым можно ознакомиться на уроке Простейшие задачи с прямой . Там же я рассказал о геометрическом смысле системы двух линейных уравнений с двумя неизвестными. Но сейчас на дворе эра алгебры, и числа-числа, действия-действия.

Решаем : из первого уравнения выразим:
Полученное выражение подставляем во второе уравнение:

Раскрываем скобки, приводим подобные слагаемые и находим значение :

Далее вспоминаем про то, от чего плясали:
Значение нам уже известно, осталось найти:

Ответ :

После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендую выполнить проверку (устно, на черновике либо калькуляторе) . Благо, делается это легко и быстро.

1) Подставляем найденный ответ в первое уравнение :

– получено верное равенство.

2) Подставляем найденный ответ во второе уравнение :

– получено верное равенство.

Или, если говорить проще, «всё сошлось»

Рассмотренный способ решения не является единственным, из первого уравнения можно было выразить , а не .
Можно наоборот – что-нибудь выразить из второго уравнения и подставить в первое уравнение. Кстати, заметьте, самый невыгодный из четырех способов – выразить из второго уравнения:

Получаются дроби, а оно зачем? Есть более рациональное решение.

Тем не менее, в ряде случаев без дробей всё-таки не обойтись. В этой связи обращаю Ваше вниманиена то, КАК я записал выражение. Не так: , и ни в коем случае не так: .

Если в высшей математике Вы имеете дело с дробными числами, то все вычисления старайтесь проводить в обыкновенных неправильных дробях .

Именно , а не или !

Запятую можно использовать лишь иногда, в частности, если – это окончательный ответ какой-нибудь задачи, и с этим числом больше не нужно выполнять никаких действий.

Многие читатели наверняка подумали «да зачем такое подробное объяснение, как для класса коррекции, и так всё понятно». Ничего подобного, вроде бы такой простой школьный пример, а сколько ОЧЕНЬ важных выводов! Вот еще один:

Любое задание следует стремиться выполнить самым рациональным способом . Хотя бы потому, что это экономит время и нервы, а также снижает вероятность допустить ошибку.

Если в задаче по высшей математике Вам встретилась система двух линейных уравнений с двумя неизвестными, то всегда можно использовать метод подстановки (если не указано, что систему нужно решить другим методом) Ни один преподаватель не подумает, что ты лох снизит оценку за использование «школьного метода».
Более того, в ряде случаев метод подстановки целесообразно использовать и при большем количестве переменных.

Пример 2

Решить систему линейных уравнений с тремя неизвестными

Похожая система уравнений часто возникает при использовании так называемого метода неопределенных коэффициентов, когда мы находим интеграл от дробно-рациональной функции . Рассматриваемая система взята мной как раз оттуда.

При нахождении интеграла – цель быстро найти значения коэффициентов , а не изощряться формулами Крамера, методом обратной матрицы и т.д. Поэтому, в данном случае уместен именно метод подстановки.

Когда дана любая система уравнений, в первую очередь желательно выяснить, а нельзя ли ее как-нибудь СРАЗУ упростить? Анализируя уравнения системы, замечаем, что второе уравнение системы можно разделить на 2, что мы и делаем:

Справка: математический знак обозначает «из этого следует это», он часто используется в ходе решения задач.

Теперь анализируем уравнения, нам нужно выразить какую-нибудь переменную через остальные. Какое уравнение выбрать? Наверное, Вы уже догадались, что проще всего для этой цели взять первое уравнение системы:

Здесь без разницы, какую переменную выражать, можно было с таким же успехом выразить или .

Далее, выражение для подставляем во второе и третье уравнения системы:

Раскрываем скобки и приводим подобные слагаемые:

Третье уравнение делим на 2:

Из второго уравнения выразим и подставим в третьей уравнение:

Практически всё готово, из третьего уравнения находим:
Из второго уравнения:
Из первого уравнения:

Проверка: Подставим найденные значения переменных в левую часть каждого уравнения системы:

1)
2)
3)

Получены соответствующие правые части уравнений, таким образом, решение найдено верно.

Пример 3

Решить систему линейных уравнений с 4 неизвестными

Это пример для самостоятельного решения (ответ в конце урока).

Решение системы методом почленного сложения (вычитания) уравнений системы

В ходе решения систем линейных уравнений нужно стараться использовать не «школьный метод», а метод почленного сложения (вычитания) уравнений системы. Почему? Это экономит время и упрощает вычисления, впрочем, сейчас станет всё понятнее.

Пример 4

Решить систему линейных уравнений:

Я взял ту же систему, что и первом примере.
Анализируя систему уравнений, замечаем, что коэффициенты при переменной одинаковы по модулю и противоположны по знаку (–1 и 1). В такой ситуации уравнения можно сложить почленно:

Действия, обведенные красным цветом, выполняются МЫСЛЕННО.
Как видите, в результате почленного сложения у нас пропала переменная . В этом, собственно, и состоит суть метода – избавиться от одной из переменных .

Системы уравнений получили широкое применение в экономической отрасли при математическом моделировании различных процессов. Например, при решении задач управления и планирования производства, логистических маршрутов (транспортная задача) или размещения оборудования.

Системы уравнения используются не только в области математики, но и физики, химии и биологии, при решении задач по нахождению численности популяции.

Системой линейных уравнений называют два и более уравнения с несколькими переменными, для которых необходимо найти общее решение. Такую последовательность чисел, при которых все уравнения станут верными равенствами или доказать, что последовательности не существует.

Линейное уравнение

Уравнения вида ax+by=c называют линейными. Обозначения x, y - это неизвестные, значение которых надо найти, b, a - коэффициенты при переменных, c - свободный член уравнения.
Решение уравнение путем построение его графика будет иметь вид прямой, все точки которой являются решением многочлена.

Виды систем линейных уравнений

Наиболее простыми считаются примеры систем линейных уравнений с двумя переменными X и Y.

F1(x, y) = 0 и F2(x, y) = 0, где F1,2 - функции, а (x, y) - переменные функций.

Решить систему уравнений - это значит найти такие значения (x, y), при которых система превращается в верное равенство или установить, что подходящих значений x и y не существует.

Пара значений (x, y), записанная в виде координат точки, называется решением системы линейных уравнений.

Если системы имеют одно общее решение или решения не существует их называют равносильными.

Однородными системами линейных уравнений являются системы правая часть которых равна нулю. Если правая после знака "равенство" часть имеет значение или выражена функцией, такая система неоднородна.

Количество переменных может быть гораздо больше двух, тогда следует говорить о примере системы линейных уравнений с тремя переменными или более.

Сталкиваясь с системами школьники предполагают, что количество уравнений обязательно должно совпадать с количеством неизвестных, но это не так. Количество уравнений в системе не зависит от переменных, их может быть сколь угодно много.

Простые и сложные методы решения систем уравнений

Не существует общего аналитического способа решения подобных систем, все методы основаны на численных решениях. В школьном курсе математики подробно описаны такие методы как перестановка, алгебраическое сложение, подстановка, а так же графический и матричный способ, решение методом Гаусса.

Основная задача при обучении способам решения - это научить правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. Главное не вызубрить систему правил и действий для каждого способа, а понять принципы применения того или иного метода

Решение примеров систем линейных уравнений 7 класса программы общеобразовательной школы довольно простое и объяснено очень подробно. В любом учебнике математике этому разделу отводится достаточно внимания. Решение примеров систем линейных уравнений методом Гаусса и Крамера более подробно изучают на первых курсах высших учебных заведений.

Решение систем методом подстановки

Действия метода подстановки направлены на выражение значения одной переменной через вторую. Выражение подставляется в оставшееся уравнение, затем его приводят к виду с одной переменной. Действие повторяется в зависимости от количества неизвестных в системе

Приведем решение примера системы линейных уравнений 7 класса методом подстановки:

Как видно из примера, переменная x была выражена через F(X) = 7 + Y. Полученное выражение, подставленное во 2-е уравнение системы на место X, помогло получить одну переменную Y во 2-е уравнении. Решение данного примера не вызывает трудностей и позволяет получить значение Y. Последний шаг это проверка полученных значений.

Решить пример системы линейных уравнений подстановкой не всегда возможно. Уравнения могут быть сложными и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Решение примера системы линейных неоднородных уравнений:

Решение с помощью алгебраического сложения

При поиске решении систем методом сложения производят почленное сложение и умножение уравнений на различные числа. Конечной целью математических действий является уравнение с одной переменной.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять когда в уравнениях присутствуют дроби и десятичные числа.

Алгоритм действий решения:

  1. Умножить обе части уравнения на некое число. В результате арифметического действия один из коэффициентов при переменной должен стать равным 1.
  2. Почленно сложить полученное выражение и найти одно из неизвестных.
  3. Подставить полученное значение во 2-е уравнение системы для поиска оставшейся переменной.

Способ решения введением новой переменной

Новую переменную можно вводить, если в системе требуется найти решение не более чем для двух уравнений, количество неизвестных тоже должно быть не больше двух.

Способ используется, чтобы упростить одно из уравнений, вводом новой переменной. Новое уравнение решается относительно введенной неизвестной, а полученное значение используется для определения первоначальной переменной.

Из примера видно, что введя новую переменную t удалось свести 1-е уравнение системы к стандартному квадратному трехчлену. Решить многочлен можно отыскав дискриминант.

Необходимо найти значение дискриминанта по известной формуле: D = b2 - 4*a*c, где D - искомый дискриминант, b, a, c - множители многочлена. В заданном примере a=1, b=16, c=39, следовательно, D=100. Если дискриминант больше нуля, то решений два: t = -b±√D / 2*a, если дискриминант меньше нуля, то решение одно: x= -b / 2*a.

Решение для полученных в итоге системы находят методом сложения.

Наглядный метод решения систем

Подходит для систем с 3-мя уравнениями. Метод заключается в построении на координатной оси графиков каждого уравнения, входящего в систему. Координаты точек пересечения кривых и будут общим решением системы.

Графический способ имеет ряд нюансов. Рассмотрим несколько примеров решения систем линейных уравнений наглядным способом.

Как видно из примера, для каждой прямой было построено две точки, значения переменной x были выбраны произвольно: 0 и 3. Исходя из значений x, найдены значения для y: 3 и 0. Точки с координатами (0, 3) и (3, 0) были отмечены на графике и соединены линией.

Действия необходимо повторить для второго уравнения. Точка пересечения прямых является решением системы.

В следующем примере требуется найти графическое решение системы линейных уравнений: 0,5x-y+2=0 и 0,5x-y-1=0.

Как видно из примера, система не имеет решения, потому что графики параллельны и не пересекаются на всем своем протяжении.

Системы из примеров 2 и 3 похожи, но при построении становится очевидно, что их решения разные. Следует помнить, что не всегда можно сказать имеет ли система решение или нет, всегда необходимо построить график.

Матрица и ее разновидности

Матрицы используются для краткой записи системы линейных уравнений. Матрицей называют таблицу специального вида, заполненную числами. n*m имеет n - строк и m - столбцов.

Матрица является квадратной, когда количество столбцов и строк равно между собой. Матрицей - вектором называется матрица из одного столбца с бесконечно возможным количеством строк. Матрица с единицами по одной из диагоналей и прочими нулевыми элементами называется единичной.

Обратная матрица - это такая матрица при умножении на которую исходная превращается в единичную, такая матрица существует только для исходной квадратной.

Правила преобразования системы уравнений в матрицу

Применительно к системам уравнений в качестве чисел матрицы записывают коэффициенты и свободные члены уравнений, одно уравнение - одна строка матрицы.

Строка матрицы называется ненулевой, если хотя бы один элемент строки не равен нулю. Поэтому если в каком-либо из уравнений количество переменных разнится, то необходимо на месте отсутствующей неизвестной вписать нуль.

Столбцы матрицы должны строго соответствовать переменным. Это означает что коэффициенты переменной x могут быть записаны только в один столбец, например первый, коэффициент неизвестной y - только во второй.

При умножении матрицы все элементы матрицы последовательно умножаются на число.

Варианты нахождения обратной матрицы

Формула нахождения обратной матрицы довольно проста: K -1 = 1 / |K|, где K -1 - обратная матрица, а |K| - определитель матрицы. |K| не должен быть равен нулю, тогда система имеет решение.

Определитель легко вычисляется для матрицы "два на два", необходимо лишь помножить друг на друга элементы по диагонали. Для варианта "три на три" существует формула |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c 3 + a 3 b 2 c 1 . Можно воспользоваться формулой, а можно запомнить что необходимо взять по одному элементу из каждой строки и каждого столбца так, чтобы в произведении не повторялись номера столбцов и строк элементов.

Решение примеров систем линейных уравнений матричным методом

Матричный способ поиска решения позволяет сократить громоздкие записи при решении систем с большим количеством переменных и уравнений.

В примере a nm - коэффициенты уравнений, матрица - вектор x n - переменные, а b n - свободные члены.

Решение систем методом Гаусса

В высшей математике способ Гаусса изучают совместно с методом Крамера, а процесс поиска решения систем так и называется метод решения Гаусса - Крамера. Данные способы используют при нахождении переменных систем с большим количеством линейных уравнений.

Метод Гаусса очень похож на решения с помощью подстановок и алгебраического сложения, но более систематичен. В школьном курсе решение способом Гаусса применяется для систем из 3 и 4 уравнений. Цель метода состоит в приведении системы к виду перевернутой трапеции. Путем алгебраических преобразований и подстановок находится значение одной переменной в одном из уравнении системы. Второе уравнение представляет собой выражение с 2-мя неизвестными, ну а 3 и 4 - соответственно с 3-мя и 4-мя переменными.

После приведения системы к описанному виду, дальнейшее решение сводится к последовательной подстановке известных переменных в уравнения системы.

В школьных учебниках для 7 класса пример решения методом Гаусса описан следующим образом:

Как видно из примера, на шаге (3) было получено два уравнения 3x 3 -2x 4 =11 и 3x 3 +2x 4 =7. Решение любого из уравнений позволит узнать одну из переменных x n .

Теорема 5, о которой упоминается в тексте, гласит что если одно из уравнений системы заменить равносильным, то полученная система будет также равносильна исходной.

Метод Гаусса труден для восприятия учеников средней школы, но является одним из наиболее интересных способов для развития смекалки детей, обучающихся по программе углубленного изучения в математических и физических классах.

Для простоты записи вычислений принято делать следующим образом:

Коэффициенты уравнений и свободные члены записываются в виде матрицы, где каждая строка матрицы соотносится с одним из уравнений системы. отделяет левую часть уравнения от правой. Римскими цифрами обозначаются номера уравнений в системе.

Сначала записывают матрицу, с которой предстоит работать, затем все действия проводимые с одной из строк. Полученную матрицу записывают после знака "стрелка" и продолжают выполнять необходимые алгебраические действия до достижения результата.

В итоге должна получиться матрица в которой по одной из диагоналей стоят 1, а все другие коэффициенты равны нулю, то есть матрицу приводят к единичному виду. Нельзя забывать производить вычисления с цифрами обеих частей уравнения.

Данный способ записи менее громоздкий и позволяет не отвлекаться на перечисление многочисленных неизвестных.

Свободное применение любого способа решения потребует внимательности и определенного опыта. Не все методы имеют прикладной характер. Какие-то способы поиска решений более предпочтительны в той иной области деятельности людей, а другие существуют в целях обучения.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Поделиться: