Названия ферментов которые образуются в организме. Биохимия ферментов. Строение, свойства и функции. Клинические испытания ферментов

Ферменты - это "рабочие лошадки" нашего организма. Если заглянуть в академический справочник, то можно выяснить, что слово ферменты в переводе с латыни, означают закваску. И именно благодаря такой вот закваске, в нашем организме ежесекундно происходит огромное количество химических процессов.

Каждый их этих химических процессов имеет свою специализацию. Во время одного, перевариваются белки, во время другого – жиры, ну а третий отвечает за усвоение углеводов. Кроме того, ферменты способны преобразовывать одно вещество в другое, более важное для организма в настоящий момент.

Продукты богатые ферментами:

Общая характеристика ферментов

Открытие ферментов произошло в 1814 году, благодаря превращению крахмала в сахар. Такое превращение случилось в результате воздействия фермента амилазы, выделенного из проростков ячменя.

В 1836 году был открыт фермент, названный в последствии пепсином. Он вырабатывается в нашем желудке самостоятельно, и при помощи соляной кислоты активно расщепляет белки. Пепсин активно используется и в сыроварении. А в дрожжевой трансформации спиртовое брожение вызывает фермент под названием зимаза.

По химической структуре ферменты относятся к классу белков. Это биокатализаторы, осуществляющие превращение веществ в организме. Ферменты по своему назначению делятся на 6 групп: лиазы, гидролазы, оксидоредуктазы, трансферазы, изомеразы и лигазы.

В 1926 году энзимы были впервые выделены из живых клеток и получены в кристаллическом виде. Таким образом, появилась возможность использовать их в составе медицинских препаратов для улучшения способности организма к перевариванию пищи.

Сегодня науке известно большое количество всевозможных ферментов, некоторые из которых выпускаются фармацевтической промышленностью в качестве медикаментов и БАДов.

Большой востребованностью сегодня пользуется панкреатин, извлекаемый из поджелудочной железы крупного рогатого скота, бромелайн (ананасовый энзим), папаин, полученный их экзотического фрукта папайи. А в жирных продуктах растительного происхождения, например, в авокадо, и в поджелудочной железе животных и человека содержится фермент липаза, участвующий в расщеплении жиров.

Суточная потребность в ферментах

Общее количество ферментов, необходимых организму для полноценного функционирования в течение суток, рассчитать сложно, из-за большого количества энзимов, существующих в нашем организме в самых разных количествах.

Если в желудочном соке содержится мало протеолитических ферментов, тогда количество продуктов содержащих необходимые ферменты следует увеличить. Панкреатин, например, назначается в размере, начиная от 576 мг в день и заканчивая, при необходимости, увеличенной в 4 раза дозировкой этого медицинского препарата.

Потребность в ферментах возрастает:

  • при вялой работе желудочно-кишечного тракта;
  • при некоторых заболеваниях органов пищеварения;
  • лишнем весе;
  • слабом иммунитет;.
  • интоксикациях организма;
  • в преклонном возрасте, когда собственные ферменты хуже вырабатываются.

Потребность в ферментах снижается:

  • в случае повышенного количества протеолитических ферментов желудочного сока;
  • индивидуальной непереносимости продуктов и препаратов, содержащих ферменты.

Полезные свойства ферментов и их влияние на организм

Ферменты участвуют в процессе пищеварения, помогая организму перерабатывать пищу. Они нормализуют обмен веществ, способствуя снижению веса. Укрепляют иммунитет, выводят из организма токсины.

Способствуют обновлению клеток организма и ускоряют процесс самоочищения организма. Преобразовывают питательные вещества в энергию. Ускоряют заживление ран.

Кроме того, пища богатая ферментами, увеличивает количество антител, которые успешно борются с инфекциями, укрепляя тем самым наш иммунитет. Присутствие в пище пищеварительных ферментов способствует ее переработке и надлежащему всасыванию питательных веществ.

Взаимодействие с эссенциальными элементами

Тесно взаимодействуют с энзимами главные компоненты нашего организма – белки, жиры, углеводы. Витамины также способствуют более активной работе некоторых ферментов.

Для активности ферментов необходимо кислотно-щелочное равновесие организма, наличие коферментов (производных витаминов) и кофакторов. А также отсутствие ингибиторов – определенных веществ, продуктов обмена, подавляющих активность ферментов во время химических реакций.

Признаки недостатка ферментов в организме:

  • нарушения в работе желудочно-кишечного тракта;
  • общая слабость;
  • недомогание;
  • боль в суставах;
  • ахилический гастрит;
  • повышенный нездоровый аппетит.

Признаки избытка ферментов в организме:

  • головная боль;
  • раздражительность;

Факторы, влияющие на содержание ферментов в организме

Регулярное употребление продуктов, содержащих ферменты, помогает восполнить недостаток необходимых энзимов в организме. Но для их полноценного усвоения и жизнестойкости, необходимо обеспечить определенное кислотно-щелочное равновесие, свойственное только здоровому организму.

В клетке любого живого организма протекают миллионы химических реакций. Каждая из них имеет большое значение, поэтому важно поддерживать скорость биологических процессов на высоком уровне. Почти каждая реакция катализируется своим ферментом. Что такое ферменты? Какова их роль в клетке?

Ферменты. Определение

Термин "фермент" происходит от латинского fermentum - закваска. Также они могут называться энзимами от греческого en zyme - "в дрожжах".

Ферменты - биологически активные вещества, поэтому любая реакция, протекающая в клетке, не обходится без их участия. Эти вещества выполняют роль катализаторов. Соответственно, любой фермент обладает двумя основными свойствами:

1) Энзим ускоряет биохимическую реакцию, но при этом не расходуется.

2) Величина константы равновесия не меняется, а лишь ускоряется достижение этого значения.

Ферменты ускоряют биохимические реакции в тысячу, а в некоторых случаях в миллион раз. Это значит, что при отсутствии ферментативного аппарата все внутриклеточные процессы практически остановятся, а сама клетка погибнет. Поэтому роль ферментов как биологически активных веществ велика.

Разнообразие энзимов позволяет разносторонне регулировать метаболизм клетки. В любом каскаде реакций принимает участие множество ферментов различных классов. Биологические катализаторы обладают большой избирательностью благодаря определенной конформации молекулы. Т. к. энзимы в большинстве случаев имеют белковую природу, они находятся в третичной или четвертичной структуре. Объясняется это опять же специфичностью молекулы.

Функции энзимов в клетке

Главная задача фермента - ускорение соответствующей реакции. Любой каскад процессов, начиная с разложения пероксида водорода и заканчивая гликолизом, требует присутствия биологического катализатора.

Правильная работа ферментов достигается высокой специфичностью к определенному субстрату. Это значит, что катализатор может ускорять только определенную реакцию и никакую больше, даже очень похожую. По степени специфичности выделяют следующие группы энзимов:

1) Ферменты с абсолютной специфичностью, когда катализируется только одна-единственная реакция. Например, коллагеназа расщепляет коллаген, а мальтаза расщепляет мальтозу.

2) Ферменты с относительной специфичностью. Сюда входят такие вещества, которые могут катализировать определенный класс реакций, к примеру, гидролитическое расщепление.

Работа биокатализатора начинается с момента присоединения его активного центра к субстрату. При этом говорят о комплементарном взаимодействии наподобие замка и ключа. Здесь имеется в виду полное совпадение формы активного центра с субстратом, что дает возможность ускорять реакцию.

Следующий этап заключается в протекании самой реакции. Ее скорость возрастает благодаря действию ферментативного комплекса. В конечном итоге мы получаем энзим, который связан с продуктами реакции.

Заключительный этап - отсоединение продуктов реакции от фермента, после чего активный центр вновь становится свободным для очередной работы.

Схематично работу фермента на каждом этапе можно записать так:

1) S + E ——> SE

2) SE ——> SP

3) SP ——> S + P , где S - это субстрат, E - фермент, а P - продукт.

Классификация ферментов

В организме человека можно найти огромное количество ферментов. Все знания об их функциях и работе были систематизированы, и в итоге появилась единая классификация, благодаря которой можно легко определить, для чего предназначен тот или иной катализатор. Здесь представлены 6 основных классов энзимов, а также примеры некоторых подгрупп.

  1. Оксидоредуктазы.

Ферменты этого класса катализируют окислительно-восстановительные реакции. Всего выделяют 17 подгрупп. Оксидоредуктазы обычно имеют небелковую часть, представленную витамином или гемом.

Среди оксидоредуктаз часто встречаются следующие подгруппы:

а) Дегидрогеназы. Биохимия ферментов-дегидрогеназ заключается в отщеплении атомов водорода и переносе их на другой субстрат. Эта подгруппа чаще всего встречается в реакциях дыхания, фотосинтеза. В составе дегидрогеназ обязательно присутствует кофермент в виде НАД/НАДФ или флавопротеидов ФАД/ФМН. Нередко встречаются ионы металлов. Примерами могут служить такие энзимы, как цитохромредуктазы, пируватдегидрогеназа, изоцитратдегидрогеназа, а также многие ферменты печени (лактатдегидрогеназа, глутаматдегидрогеназа и т. д.).

б) Оксидазы. Ряд ферментов катализирует присоединение кислорода к водороду, в результате чего продуктами реакции могут быть вода или пероксид водорода (H 2 0, H 2 0 2). Примеры ферментов: цитохромоксидаза, тирозиназа.

в) Пероксидазы и каталазы - энзимы, катализирующие распад H 2 O 2 на кислород и воду.

г) Оксигеназы. Эти биокатализаторы ускоряют присоединение кислорода к субстрату. Дофамингидроксилаза - один из примеров таких энзимов.

2. Трансферазы.

Задача ферментов этой группы состоит в переносе радикалов от вещества-донора к веществу-реципиенту.

а) Метилтрансферазы. ДНК-метилтрансферазы - основные ферменты, контролирующие процесс репликации нуклеотидов играет большую роль в регуляции работы нуклеиновой кислоты.

б) Ацилтрансферазы. Энзимы этой подгруппы транспортируют ацильную группу с одной молекулы на другую. Примеры ацилтрансфераз: лецитинхолестеринацилтрансфераза (переносит функциональную группу с жирной кислоты на холестерин), лизофосфатидилхолинацилтрансфераза (ацильная группа переносится на лизофосфатидилхолин).

в) Аминотрансферазы - ферменты, которые участвуют в превращении аминокислот. Примеры ферментов: аланинаминотрансфераза, которая катализирует синтез аланина из пирувата и глутамата путем переноса аминогруппы.

г) Фосфотрансферазы. Ферменты этой подгруппы катализируют присоединение фосфатной группы. Другое название фосфотрансфераз, киназы, встречается намного чаще. Примерами могут служить такие энзимы, как гексокиназы и аспартаткиназы, которые присоединяют фосфорные остатки к гексозам (чаще всего к глюкозе) и к аспарагиновой кислоте соответственно.

3. Гидролазы - класс энзимов, которые катализируют расщепление связей в молекуле с последующим присоединением воды. Вещества, которые относятся к этой группе, - основные ферменты пищеварения.

а) Эстеразы - разрывают эфирные связи. Пример - липазы, которые расщепляют жиры.

б) Гликозидазы. Биохимия ферментов этого ряда заключается в разрушении гликозидных связей полимеров (полисахаридов и олигосахаридов). Примеры: амилаза, сахараза, мальтаза.

в) Пептидазы - энзимы, катализирующие разрушение белков до аминокислот. К пептидазам относятся такие ферменты, как пепсины, трипсин, химотрипсин, карбоиксипептидаза.

г) Амидазы - расщепляют амидные связи. Примеры: аргиназа, уреаза, глутаминаза и т. д. Многие ферменты-амидазы встречаются в

4. Лиазы - ферменты, по функции схожие с гидролазами, однако при расщеплении связей в молекулах не затрачивается вода. Энзимы этого класса всегда имеют в составе небелковую часть, например, в виде витаминов В1 или В6.

а) Декарбоксилазы. Эти ферменты действуют на С-С связь. Примерами могут служить глутаматдекарбоксилаза или пируватдекарбоксилаза.

б) Гидратазы и дегидратазы - ферменты, которые катализируют реакцию расщепления связей С-О.

в) Амидин-лиазы - разрушают С-N связи. Пример: аргининсукцинатлиаза.

г) Р-О лиазы. Такие ферменты, как правило, отщепляют фосфатную группу от вещества-субстрата. Пример: аденилатциклаза.

Биохимия ферментов основана на их строении

Способности каждого энзима определяются индивидуальным, только ему свойственным строением. Любой фермент - это, прежде всего, белок, и его структура и степень сворачивания играют решающую роль в определении его функции.

Для каждого биокатализатора характерно наличие активного центра, который, в свою очередь, делится на несколько самостоятельных функциональных областей:

1) Каталитический центр - это специальная область белка, по которой происходит присоединение фермента к субстрату. В зависимости от конформации белковой молекулы каталитический центр может принимать разнообразную форму, которая должна соответствовать субстрату так же, как замок ключу. Такая сложная структура объясняет то, что находится в третичном или четвертичном состоянии.

2) Адсорбционный центр - выполняет роль «держателя». Здесь в первую очередь происходит связь между молекулой фермента и молекулой-субстратом. Однако связи, которые образует адсорбционный центр, очень слабые, а значит, каталитическая реакция на этом этапе обратима.

3) Аллостерические центры могут располагаться как в активном центре, так и по всей поверхности фермента в целом. Их функция - регулирование работы энзима. Регулирование происходит с помощью молекул-ингибиторов и молекул-активаторов.

Активаторные белки, связываясь с молекулой фермента, ускоряют его работу. Ингибиторы же, напротив, затормаживают каталитическую активность, причем это может происходить двумя способами: либо молекула связывается с аллостерическим центром в области активного центра фермента (конкурентное ингибирование), либо она присоединяется к другой области белка (неконкурентное ингибирование). считается более действенным. Ведь при этом закрывается место для связывания субстрата с ферментом, причем этот процесс возможен только в случае практически полного совпадения формы молекулы ингибитора и активного центра.

Энзим зачастую состоит не только из аминокислот, но и из других органических и неорганических веществ. Соответственно, выделяют апофермент - белковую часть, кофермент - органическую часть, и кофактор - неорганическую часть. Кофермент может быть представлен улгеводами, жирами, нуклеиновыми кислотами, витаминами. В свою очередь, кофактор - это чаще всего вспомогательные ионы металлов. Активность ферментов определяется его строением: дополнительные вещества, входящие в состав, меняют каталитические свойства. Разнообразные виды ферментов - это результат комбинирования всех перечисленных факторов образования комплекса.

Регуляция работы ферментов

Энзимы как биологически активные вещества не всегда необходимы организму. Биохимия ферментов такова, что они могут в случае чрезмерного катализа навредить живой клетке. Для предотвращения пагубного влияния энзимов на организм необходимо каким-то образом регулировать их работу.

Т. к. ферменты имеют белковую природу, они легко разрушаются при высоких температурах. Процесс денатурации обратим, однако он может существенно повлиять на работу веществ.

pH также играет большую роль в регуляции. Наибольшая активность ферментов, как правило, наблюдается при нейтральных значениях pH (7,0-7,2). Также есть энзимы, которые работают только в кислой среде или только в щелочной. Так, в клеточных лизосомах поддерживается низкий pH, при котором активность гидролитических ферментов максимальна. В случае их случайного попадания в цитоплазму, где среда уже ближе к нейтральной, их активность снизится. Такая защита от «самопоедания» основана на особенностях работы гидролаз.

Стоит упомянуть о значении кофермента и кофактора в составе ферментов. Наличие витаминов или ионов металла существенно влияет на функционирование некоторых специфических энзимов.

Номенклатура ферментов

Все ферменты организма принято называть в зависимости от их принадлежности к какому-либо из классов, а также по субстрату, с которым они вступают в реакцию. Иногда по используют в названии не один, а два субстрата.

Примеры названия некоторых энзимов:

  1. Ферменты печени: лактат-дегидроген-аза, глутамат-дегидроген-аза.
  2. Полное систематическое название фермента: лактат-НАД+-оксидоредукт-аза.

Сохранились и тривиальные названия, которые не придерживаются правил номенклатуры. Примерами являются пищеварительные ферменты: трипсин, химотрипсин, пепсин.

Процесс синтеза ферментов

Функции ферментов определяются еще на генетическом уровне. Т. к. молекула по большому счету - белок, то и ее синтез в точности повторяет процессы транскрипции и трансляции.

Синтез ферментов происходит по следующей схеме. Вначале с ДНК считывается информация о нужном энзиме, в результате чего образуется мРНК. Матричная РНК кодирует все аминокислоты, которые входят в состав энзима. Регуляция ферментов может происходить и на уровне ДНК: если продукта катализируемой реакции достаточно, транскрипция гена прекращается и наоборот, если возникла потребность в продукте, активизируется процесс транскрипции.

После того как мРНК вышла в цитоплазму клетки, начинается следующий этап - трансляция. На рибосомах эндоплазматической сети синтезируется первичная цепочка, состоящая из аминокислот, соединенных пептидными связями. Однако молекула белка в первичной структуре еще не может выполнять свои ферментативные функции.

Активность ферментов зависит от структуры белка. На той же ЭПС происходит скручивание протеина, в результате чего образуются сначала вторичная, а потом третичная структуры. Синтез некоторых ферментов останавливается уже на этом этапе, однако для активизации каталитической активности зачастую необходимо присоединение кофермента и кофактора.

В определенных областях эндоплазматической сети происходит присоединение органических составляющих энзима: моносахаридов, нуклеиновых кислот, жиров, витаминов. Некоторые ферменты не могут работать без наличия кофермента.

Кофактор играет решающую роль в образовании Некоторые функции ферментов доступны только при достижении белком доменной организации. Поэтому для них очень важно наличие четвертичной структуры, в которой соединяющим звеном между несколькими глобулами белка является ион металла.

Множественные формы ферментов

Встречаются ситуации, когда необходимо наличие нескольких энзимов, катализирующих одну и ту же реакцию, но отличающихся друг от друга по каким-либо параметрам. Например, фермент может работать при 20 градусах, однако при 0 градусов он уже не сможет выполнять свои функции. Что делать в подобной ситуации живому организму при низких температурах среды?

Эта проблема легко решается наличием сразу нескольких ферментов, катализирующих одну и ту же реакцию, но работающих в разных условиях. Существуют два типа множественных форм энзимов:

  1. Изоферменты. Такие белки кодируются разными генами, состоят из разных аминокислот, однако катализируют одну и ту же реакцию.
  2. Истинные множественные формы. Эти белки транскрибируются с одного и того же гена, однако на рибосомах происходит модификация пептидов. На выходе получают несколько форм одного и того же фермента.

В результате первый тип множественных форм сформирован на генетическом уровне, когда второй - на посттрансляционном.

Значение ферментов

В медицине сводится к выпуску новых лекарственных средств, в составе которых вещества уже находятся в нужных количествах. Ученые еще не нашли способ стимулирования синтеза недостающих энзимов в организме, однако сегодня широко распространены препараты, которые могут на время восполнить их недостаток.

Различные ферменты в клетке катализируют большое количество реакций, связанных с поддержанием жизнедеятельности. Одними из таких энизмов являются представители группы нуклеаз: эндонуклеазы и экзонуклеазы. Их работа заключается в поддержании постоянного уровня нуклеиновых кислот в клетке, удалении поврежденных ДНК и РНК.

Не стоит забывать о таком явлении, как свертывание крови. Являясь эффективной мерой защиты, данный процесс находится под контролем ряда ферментов. Главным из них является тромбин, который переводит неактивный белок фибриноген в активный фибрин. Его нити создают своеобразную сеть, которая закупоривает место повреждения сосуда, тем самым препятствуя излишней кровопотере.

Ферменты используются в виноделии, пивоварении, получении многих кисломолочных продуктов. Для получения спирта из глюкозы могут использоваться дрожжи, однако для удачного протекания этого процесса достаточно и экстракта из них.

Интересные факты, о которых вы не знали

Все ферменты организма имеют огромную массу - от 5000 до 1000000 Да. Это связано с наличием белка в составе молекулы. Для сравнения: молекулярная масса глюкозы - 180 Да, а углекислого газа - всего 44 Да.

На сегодняшний день открыто более чем 2000 ферментов, которые были обнаружены в клетках различных организмов. Однако большинство из этих веществ до конца еще не изучено.

Активность ферментов используется для получения эффективных стиральных порошков. Здесь энзимы выполняют ту же роль, что и в организме: они разрушают органические вещества, и это свойство помогает в борьбе с пятнами. Рекомендуется использовать подобный стиральный порошок при температуре не выше 50 градусов, иначе может пойти процесс денатурации.

По статистике, 20% людей по всему миру страдает от недостатка какого-либо из ферментов.

О свойствах энзимов знали очень давно, однако только в 1897 году люди поняли, что для сбраживания сахара в спирт можно использовать не сами дрожжи, а экстракт из их клеток.

>>> Ферменты

Что Вы знаете о ферментах? Именно из них сделаны таблетки, которые всегда рекламируют по телевизору? Это они помогают переварить целую гору жареной курицы и пирожков? Не слишком обширные сведения. А хотите узнать больше? Дочитайте эту статью.

Ферменты – это вещества, без которых невозможно течение множества процессов в организме. На самом деле, ферменты принимают участие не только в переваривании пищи, но и в работе центральной нервной системы, в процессах роста новых клеток.
Ферменты относятся к белкам. Но в их составе есть и минеральные соли. Ферментов достаточно много и каждый обладает совершенно уникальным действием на узкий круг веществ. Ферменты не могут заменять друг друга.

Ферменты могут действовать только при температуре , не превышающей пятидесяти четырех градусов. Но и слишком низкие температуры тоже не способствуют их активности. Ведь «работают» ферменты в человеческом теле и оптимальна для них именно температура тела. Губителен для ферментов солнечный свет и кислород. Метаболизм жиров, белков, минералов и углеводов проходит только в присутствии ферментов.

Ферменты действуют в кишечнике. При этом витамин Е помогает ферментам достичь в неизменном состоянии кишечника. Работа ферментов значительно сокращает энергетические затраты организма на переработку пищи. Если Вы не любитель сырых фруктов и овощей, то, скорее всего, у Вас в организме ферментов вырабатывается недостаточно.

Все ферменты разделяются на три основных группы: амилаза, липаза и протеаза.
Фермент амилаза необходим для переработки углеводов. Под воздействием амилазы углеводы разрушаются и легко всасываются в кровь . Амилаза присутствует как в слюне, так и в кишечнике. Амилаза тоже бывает разной. Для каждого вида сахаров существует собственный вид этого фермента.

Липаза – это ферменты, которые присутствуют в желудочном соке и вырабатываются поджелудочной железой. Липаза необходима для усвоения организмом жиров.

Протеаза – это группа ферментов, которые присутствуют в желудочном соке и тоже вырабатываются поджелудочной железой. Кроме этого, протеаза присутствует и в кишечнике. Протеаза необходима для расщепления белков.

Существуют такие ферменты, которые запускают процессы обмена веществ внутри клеток. Практически нет в организме такой системы, которая не вырабатывала бы свои ферменты. Существуют и продукты питания, в которых есть собственные ферменты. Это авокадо, ананасы, папайя, манго, бананы и различные пророщенные зерна.

В организме вырабатываются и так называемые протеолитические ферменты, которые не только участвуют в пищеварении, но еще и снимают воспалительные процессы. К таким ферментам относят панкреатин , пепсин, ренин, трипсин и химотрипсин.

Наиболее распространенным в лекарственной форме является фермент панкреатин. Его применяют в случае нехватки ферментов в организме, для облегчения переваривания пищи, при аллергиях на еду, различных тяжелых нарушениях иммунитета , а также других сложных внутренних болезнях.

Если Вы страдаете ферментной недостаточностью, то предпочтительнее использовать такие лекарства, которые содержат сразу несколько ферментов. Но есть препараты, содержащие только один какой-либо фермент. Обычно ферментные препараты нужно употреблять во время еды, но иногда эффективнее прием после еды. Лекарственные средства, которые содержат ферменты, следует держать в холодильнике.

Ферментные препараты смело можно назвать БАД (биологически активными добавками). Но применять их бесконтрольно на протяжении длительного времени все же не стоит. Лучше проконсультироваться с врачом.

Читать еще:

















Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

биологический фермент белковый

Насколько мы знаем в нашем организме действует очень много ферментов, которые способствуют осуществлению обменных процессов (дыхание, пищеварение, мышечное сокращение, фотосинтез), которые и определяют сам процесс жизни. Поэтому препараты стали широко применяться при лечении заболеваний, сопровождающихся гнойно-некротическими процессами, при тромбозах и тромбоэмболиях, нарушениях процессов пищеварения. Ферментные препараты стали находить также применение при лечении онкологических заболеваний.

Ферменты играют довольно важную роль и в проведении многих технологических процессов. Ферменты высокого качества позволяют улучшить технологию, сократить затраты и даже получить новые продукты.

В настоящее время ферменты применяются более чем в 25 отраслях промышленности: это и пищевая промышленность, и фармацевтическая, целлюлозно-бумажная, лёгкая, а так же в сельском хозяйстве.

Целью моего реферата является: подробное исследование понятий фермента и ферментативного катализа (биокатализа).

1) Что же такое ферменты, какую роль они играют?

2) Структура и механизм действия ферментов.

3) Рассмотреть функции ферментов.

4) Принцип действия ферментов.

5) Классификация ферментов.

6) Область применения ферментов.

7) Методы выделения ферментов.

8) Факторы, влияющие на реакции фермента?

1. Что же такое ферменты, какую роль они играют?

Ферменты - это органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами. Ферменты иногда называют энзимами (от греч. en - внутри, zyme - закваска). Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии - энзимология.

Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки; так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы.

Первые данные о ферментах были получены при изучении процессов брожения и пищеварения. Большой вклад в исследование брожения внес Л. Пастер, однако он полагал, что соответствующие реакции могут осуществлять только живые клетки. В начале 20 в. Э. Бухнер показал, что сбраживание сахарозы с образованием диоксида углерода и этилового спирта может катализироваться бесклеточным дрожжевым экстрактом. Это важное открытие послужило стимулом к выделению и изучению клеточных ферментов. В 1926 Дж. Самнер из Корнеллского университета (США) выделил уреазу; это был первый фермент, полученный в практически чистом виде. С тех пор обнаружено и выделено более 700 ферментов, но в живых организмах их существует гораздо больше. Идентификация, выделение и изучение свойств отдельных ферментов занимают центральное место в современной энзимологии.

Ферменты, участвующие в фундаментальных процессах превращения энергии, таких, как расщепление сахаров, образование и гидролиз высокоэнергетического соединения аденозинтрифосфата (АТФ), присутствуют в клетках всех типов - животных, растительных, бактериальных. Однако есть ферменты, которые образуются только в тканях определенных организмов. Так, ферменты, участвующие в синтезе целлюлозы, обнаруживаются в растительных, но не в животных клетках. Таким образом, важно различать «универсальные» ферменты и ферменты, специфичные для тех или иных типов клеток. Вообще говоря, чем более клетка специализирована, тем больше вероятность, что она будет синтезировать набор ферментов, необходимый для выполнения конкретной клеточной функции.

На сегодняшний день известно свыше 3000 ферментов. Все они обладают рядом специфических свойств, отличающих их от неорганических катализаторов. Только в человеческом организме ежесекундно происходят тысячи ферментативных реакций. Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Нужно также отметить, что вся живая природа существует исключительно благодаря биокатализу. Недаром великий русский физиолог, нобелевский лауреат И.П. Павлов назвал ферменты носителями жизни.

2. Структура и механизм действия ферментов

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата.

Рис. 1. Строение фермента

3. Функции ферментов

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ(субстратов) в другие (продукты) .

Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах - ими катализируется более 4000 разных биохимических реакций.

Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону.

Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность - константа связывания некоторых субстратов с белком может достигать 10? 10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка теленка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37°C.

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов - ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы - в сотни и тысячи раз.

4. Принцип действия ферментов

Вещество, подвергающееся превращению в присутствии фермента, называют субстратом. Субстрат присоединяется к ферменту, который ускоряет разрыв одних химических связей в его молекуле и создание других; образующийся в результате продукт отсоединяется от фермента.

Ферменты не подвергаются износу во время реакции. Они высвобождаются по завершению реакции и сразу же готовы начать следующую реакцию. Теоретически это может продолжаться бесконечно, по крайней мере, до тех пор, пока они не израсходуют весь субстрат. На практике вследствие их восприимчивости и органического состава, продолжительность существования ферментов ограничена.

По образному выражению, употребляемому в биохимической литературе, фермент подходит к субстрату, как «ключ к замку». Это правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента. Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса (образования промежуточного комплекса). Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике. В 50-е годы нашего столетия это статическое представление было заменено гипотезой Д. Кошланда об индуцированном соответствии субстрата и фермента. Сущность ее сводится к тому, что пространственное соответствие структуры субстрата и активного центра фермента создается в момент их взаимодействия друг с другом, что может быть выряжено формулой «перчатка-рука». Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния.

Но в процессе всё большего развития науки гипотеза Кошланда постепенно вытесняется гипотезой топохимического соответствия. Сохраняя основные положения гипотезы взаимоиндуцированной настройки субстрата и фермента, она фиксирует внимание на том, что специфичность действия ферментов объясняется в первую очередь узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают многочисленные точечные гидрофобные взаимодействия и водородные связи.

5. Классификация ферментов

Сейчас известно около 2 тысяч ферментов, но список этот не закончен. В зависимости от типа катализируемой реакции все ферменты подразделяются на 6 классов:

Ш Ферменты, катализирующие окислительно-восстановительные реакции оксидоредуктазы;

Ш Ферменты переноса различных группировок (метильных, амино- и фосфогрупп и другие) - трансферазы.

Ш Ферменты, осущевствляющие гидролиз химических связей - гидролазы

Ш Ферменты не гидролитического отщепления от субстрата различных группировок (NH3, CO2, H2O и другие) - лиазы.

Ш Ферменты, ускоряющие синтез связей в биологических молекулах при участии доноторов энергии, например АТФ, - лигазы.

Ш Ферменты, катализирующие превращение изомеров друг в друга, - изомеразы.

Оксидоредуктазы - это ферменты, катализирующие окислительно-восстановительные процессы в организме. Они осущевствляют перенос водорода и электронов и по своим привиальным названием известны как дегидрогеназы, оксидазы и пероксидазы. Эти ферменты отличаются тем, что имеют специфические коферменты и простетические группы. Их подразделяют на функциональные группы доноров, от которых они принимают водород или электроны, и акцепторов, на которые они их передают (на СН-ОН группу, СН - NH группу, C-NH группу и другие).

Трансферазы - это ферменты, переносящие атомные группы (в зависимости от того, перенос какой группы они осуществляют, их соответственно называют). Трансферазы благодаря разнообразию переносимых ими остатков принимают участие в промежуточном обмене веществ.

Гидролазы - это ферменты, катализирующие гидролитическое расщепление различных субстратов (при участии молекул воды). В зависимости от этого среди них различают эстеразы, расщипляющие сложноэфирную связь между карбоновыми кислотами (липаза) тиоловых эфиров, фосфоэфирную связь и так далее; гликозидазы, расщепляющие гликозидные связи, пептид - гидролазы, действует на пептидную связь и другие.

Лиазы - к этой группе относятся ферменты, способные отщеплять различные группы от субстрата не гидролитическим путём с образованием двойных связей или, напротив, присоединять группы к двойной связи. При расщеплении образуется Н2О или СО2 или большие остатки - например ацетил - СоА. Лиазы играют весьма важную роль в процессе обмена веществ.

Изомеразы - ферменты, катализирующие превращение изомерных форм друг в друга, то - есть осуществляющие внутримолекулярное превращение различных групп. К ним относятся не только ферменты, стимулирующие реакции взаимных переходов оптических и геометрических изомеров, но и такие, которые могут способствовать превращению альдоз в кетозы.

Лигазы. Раньше эти ферменты не отделяли от лиаз, так как реакция последних часто идёт в двух направлениях, однако недавно было выяснено, что синтез и распад в большинстве случаев происходит под влиянием различных ферментов, и на этом основании выделен отдельный класс лигаз (синтетаз). Ферменты, обладающие двойным действием, получили название бифункциональных. Лигазы принимают участие в реакции соединения двух молекул, то есть синтетических процессах, сопровождающихся расщеплением макроэнергитических связей АТФ или других макроэргов.

«Первое подразделение ферментов на самые крупные группы (6 классов) основано не на названии субстрата, а на природе химической реакции, которую фермент катализирует. Далее, внутри классов ферменты делят на подклассы, руководствуясь строением субстрата. В подклассы объединяют ферменты данного класса, действующие на сходно построенные субстраты. На этом деление не заканчивается. Ферменты каждого подкласса разбивают на подклассы, в которых ещё строже уточняют структуру химических групп, отличающих субстраты друг от друга. Подкласс это последняя низшая ступень классификации. Внутри подклассов перечисляют уже отдельные ферменты.

6. Область применения ферментов

Обладая высокой степенью избирательности, ферменты используются живыми организмами для осуществления с высокой скоростью огромного разнообразия химических реакций; они сохраняют свою активность не только в микропространстве клетки, но и вне организма. Ферменты нашли широкое применение в таких отраслях промышленности, как хлебопечение, пивоварение, виноделие, чайное, кожевенное и меховое производства, сыроварение, кулинария (для обработки мяса) и т.д. В последние годы ферменты стали применять в тонкой химической индустрии для осуществления таких реакций органической химии, как окисление, восстановление, дезамини-рование, декарбоксилирование, дегидратация, конденсация, а также для разделения и выделения изомеров аминокислот L-ряда (при химическом синтезе образуются рацемические смеси L- и D-изомеров), которые используют в промышленности, сельском хозяйстве, медицине. Овладение тонкими механизмами действия ферментов, несомненно, предоставит неограниченные возможности получения в огромных количествах и с большой скоростью полезных веществ в лабораторных условиях почти со 100% выходом. В настоящее время развивается новая отрасль науки - промышленная энзимология, являющаяся основой биотехнологии. Фермент, ковалентно присоединенный («пришитый») к любому органическому или неорганическому полимерному носителю (матрице), называют иммобилизованным. Техника иммобилизации ферментов допускает решение ряда ключевых вопросов энзимологии: обеспечение высокой специфичности действия ферментов и повышения их стабильности, простоту в обращении, возможность повторного использования, применение их в синтетических реакциях в потоке. Применение подобной техники в промышленности получило название инженерной энзимологии. Ряд примеров свидетельствует об огромных возможностях инженерной энзимологии в различных областях промышленности, медицины, сельского хозяйства. В частности, иммобилизованную в-галактозидазу, присоединенную к магнитному стержню-мешалке, используют для снижения содержания молочного сахара в молоке, т.е. продукта, который не расщепляется в организме больного ребенка с наследственной непереносимостью лактозы. Обработанное таким образом молоко, кроме того, хранится в замороженном состоянии значительно дольше и не подвергается загустеванию. Разработаны проекты получения пищевых продуктов из целлюлозы, превращения ее с помощью иммобилизованных ферментов - целлюлаз - в глюкозу, которую можно превратить в пищевой продукт - крахмал. С помощью ферментной технологии в принципе можно также получить продукты питания, в частности углеводы, из жидкого горючего (нефти), расщепив его до глицеральдегида, и далее при участии ферментов синтезировать из него глюкозу и крахмал. Несомненно, имеет большое будущее моделирование при помощи инженерной энзимологии процесса фотосинтеза, т.е. природного процесса фиксации СО2; помимо иммобилизации, этот жизненно важный для всего человечества процесс потребует разработки новых оригинальных подходов и применения ряда специфических иммобилизованных коферментов. В качестве примера иммобилизации ферментов и использования их в промышленности приводим схему непрерывного процесса получения аминокислоты аланина и регенерации кофермента (в частности, НАД) в модельной системе (Рис. 2). В этой системе исходный субстрат (молочная кислота) подается при помощи насоса в камеру-реактор, содержащий иммобилизованные на декстране НАД+ и две НАД-зависимые дегидрогеназы: лактат- и аланиндегидрогеназы; с противоположного конца реактора продукт реакции - аланин - удаляется с заданной скоростью.

Рис. 2. Схема непрерывного процесса получения аминокислоты

Подобные реакторы нашли применение в фармацевтической промышленности, например при синтезе из гидрокортизона антиревматоидного препарата преднизолона. Кроме того, они могут служить моделью для применения с целью синтеза и получения незаменимых факторов, поскольку при помощи иммобилизованных ферментов и коферментов можно направленно осуществлять сопряженные химические реакции (включая биосинтез незаменимых метаболитов), устраняя тем самым недостаток в веществах при наследственных пороках обмена. Таким образом, при помощи нового методологического подхода наука делает свои первые шаги в области «синтетической биохимии». Не менее важными направлениями исследований являются иммобилизация клеток и создание методами генотехники (генного инженерного конструирования) промышленных штаммов микроорганизмов - продуцентов витаминов и незаменимых аминокислот. В качестве примера медицинского применения достижений биотехнологии можно привести иммобилизацию клеток щитовидной железы для определения тиреотропного гормона в биологических жидкостях или тканевых экстрактах. На очереди - создание биотехнологического способа получения некалорийных сластей, т.е. пищевых заменителей сахара, которые могут создавать ощущение сладости, не будучи высококалорийными. Одно из подобных перспективных веществ - аспартам, который представляет собой метиловый эфир дипептида - аспартилфенилаланина (см. ранее). Аспартам почти в 300 раз слаще сахара, безвреден и в организме расщепляется на естественно встречающиеся свободные аминокислоты: аспарагиновую кислоту (аспар-тат) и фенилаланин. Аспартам, несомненно, найдет широкое применение как в медицине, так и в пищевой промышленности (в США, например, его используют для детского питания и добавляют вместо сахара в диетическую кока-колу). Для производства аспартама методами генотехники необходимо получить не только свободную аспарагиновую кислоту и фе-нилаланин (предшественники), но и бактериальный фермент, катализирующий биосинтез этого дипептида. Значение инженерной энзимологии, как и вообще биотехнологии, возрастет в будущем. По подсчетам специалистов, продукция всех биотехнологических процессов в химической, фармацевтической, пищевой промышленности, в медицине и сельском хозяйстве, полученная в течение одного года в мире, будет исчисляться десятками миллиардов долларов к 2000 г. В нашей стране уже к 2000 г. будет налажено получение методами генной инженерии L-треонина и витамина В2. Уже к 1998 г. предполагается производство ряда ферментов, антибиотиков, б1-, в-, г-интерферонов; проходят клинические испытания препараты инсулина и гормона роста. Гибридомной техникой в стране налажен выпуск реактивов для иммуноферментных методов определения многих химических компонентов в биологических жидкостях.

7. Методы выделения ферментов

Процесс выделения какого-либо белка начинается с переведения белков ткани в раствор. Для этого ткань (материал), из которой получают фермент, тщательно измельчают в гомогенизаторе в присутствии буферного раствора. Для лучшего разрушения клеток к материалу добавляют кварцевый песок, если материал растирают в ступке. В результате получают кашицу - гомогенат. Если не проводилось предварительное фракционирование органоидов клетки, гомогенат содержит обрывки клеток, ядра, хлоропласты и другие органоиды клеток, растворимые пигменты и белки.

При выделении ферментов из тканей живых организмов, в том числе растительных, необходимо соблюдать условия, не вызывающие денатурацию белка. Все работы проводят при пониженной температуре (40 С) и при оптимальных для данного фермента значениях pH среды буферного раствора.

После перевода ферментов из ткани в растворенное состояние гомогенат подвергают центрифугированию для отделения нерастворимой части материала, а затем в отдельных фракциях экстрата-центрифугата выделяют следуемые ферменты.

Так как все ферменты являются белками, то для получения очищенных препаратов ферментов применяются те же способы выделения, что и при работе с белками.

Методы выделения:

· осаждение белка органическими растворителями;

· высаливание;

· метод электрофореза;

· метод ионообменной хроматографии;

· метод центрифугирования;

· метод гельфильтрации;

· метод аффинной хроматографии, или метод хроматографии по сродству;

· избирательная денатурация.

8. Факторы, влияющие на реакции фермента

На активность ферментов, а следовательно и на скорость реакций ферментативного катализа оказывают влияние различные факторы:

Ш Концентрация и доступность субстрата. При постоянном количестве фермента скорость возрастает с увеличением концентрации субстрата. Эта реакция подчинена закону действующих масс и рассматривается в свете теории Михаэлиса - Ментона.

Ш Концентрация фермента. Концентрация ферментов всегда относительно невелика. Скорость любого ферментативного процесса в значительной степени зависит от концентрации фермента. Для большинства пищевых применений скорость реакций пропорциональна концентрации ферментов. Исключение составляют те случаи, когда реакции доводят до очень низких уровней субстрата.

Ш Температура реакции. До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного - между 50 и 60°С. Самой оптимальной температурой является 37 o С, при которой в живом организме процессы протекают быстро, сберегая большое количество энергии. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина оптимум находится при 8О°С. В то же время у каталазы оптимальная температура действия находится между 0 и -10°С.

Ш рН реакции. Для каждого фермента характерна определённая область значения рН, при которых фермент проявляет максимальную активность. Однако наилучшими условиями их функционирования являются близкое к нейтральному значение величины рН. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты. Влияние рН среды на действия ферментов основано на том, что происходит изменение заряда различных групп белка в активном центре фермента, вызывающее существенное изменение конформации полипептидной цепи.

Ш Продолжительность процесса. Для реакции ферментативного катализа первого порядка скорость реакции со временем уменьшается, так как уменьшается доступность субстрата. Такие реакции ферментативного катализа требуют достаточно много времени для её завершения.

Ш Наличие ингибиторов или активаторов. Химические вещества, способные оказывать вредное воздействие на реакцию ферментации, получили названия «ингибиторы». В качестве таких веществ могут выступать металлы (медь, железо, кальций) или соединения из субстратов. Некоторые вещества способны активировать или стабилизировать ферменты. Присутствие в реакционной среде некоторых ионов может активировать образование активного субстрат ферментного комплекса, и в этом случае скорость ферментативной реакции будет увеличивается. Такие вещества получили название активаторов.

Заключение

В данном реферате мы рассмотрели одно из биологически активных веществ, а именно - ферменты. Ферменты являются биологическим катализатором белковой природы, ускоряющим химические реакции в живых организмов и вне их. Ферменты обладают уникальными свойствами, которые отличают их от обычных органических катализаторов. Это, прежде всего, необычно высокая каталитическая активность. Другое важнейшее свойство ферментов - это избирательность их действия.

Важным свойством ферментов, которое необходимо учитывать при их практическом пользовании, является стабильность, т.е. их способность сохранять каталитическую активность.

Благодаря высокой специфичности ферментов в организме не воцаряется хаос: каждый фермент выполняет строго отведённые ему функции, не влияя на течение многих десятков и сотен других реакций, происходящих в его окружении. Роль ферментов в жизнедеятельности организмов велика.

Будущее ферментов очень интересно. Технология обнаружения и производства новых ферментов развивается с большой скоростью. Прежде применение и производство ферментов развивалось большей частью за счет попыток и ошибок. Так как детали, влияющие на химию и действие ферментов, были известны плохо, то в препаратах использовались смеси наиболее универсальных ферментов. Благодаря новым исследованиям при производстве сбываемой продукции возможно использование более специфичных ферментов.

Сегодня развивающиеся технологии с каждым днем раскрывают все новые чудеса сотворения жизни, и «биомиметика» как наука избирает примерами превосходные системы в организмах живых существ, создавая по их образу и подобию изобретения для пользы и блага людей. Учёные попытаются найти химические аналоги ферментов и на их основе создать новые промышленные процессы.

Литература

1. «Биофизическая химия» / А.Г. Пасынский [Текст] -375 с.

2. Нечаев А.П., Кочеткова А.А, Зайцев А.Н. / Пищевые добавки [Текст] // М., 2001. - 232 с.

3. «Основы биохимии» / Г.А. Смирнова. [Текст] -278 с.

4. «Ферменты-двигатели жизни» / В.И. Розенгарт. [Текст] -378 с.

5. «Энциклопедический словарь юного биолога» / М.С. Гиляров. [Текст] -488 с.

Размещено на Allbest.ru

...

Подобные документы

    Характеристика ферментов, органических катализаторов белковой природы, которые ускоряют реакции, необходимые для функционирования живых организмов. Условия действия, получение и применение ферментов. Болезни, связанные с нарушением выработки ферментов.

    презентация , добавлен 19.10.2013

    Классификация ферментов, их функции. Соглашения о наименовании ферментов, структура и механизм их действия. Описание кинетики односубстратных ферментативных реакций. Модели "ключ-замок", индуцированного соответствия. Модификации, кофакторы ферментов.

    презентация , добавлен 17.10.2012

    Химический состав, природа и структура белков. Механизм действия ферментов, виды их активирования и ингибирования. Современная классификация и номенклатура ферментов и витаминов. Механизм биологического окисления, главная цепь дыхательных ферментов.

    шпаргалка , добавлен 20.06.2013

    Исследование биологической роли ферментов в механизмах взаимодействия адренергической и пептидергической систем. Определение активности ферментов флюорометрическим методом. Изучение гипофиза, гипоталамуса, больших полушарий и четверохолмия самцов крыс.

    статья , добавлен 01.09.2013

    Определение ферментов как специфических белков, присутствующих во всех живых клетках биологических катализаторов. Пространственность структурной молекулы ферментов, процесс биосинтеза оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы.

    контрольная работа , добавлен 27.01.2011

    Понятие ферментов как глобулярных белков, которые состоят из одной или нескольких полипептидных цепей. Особенности строения простых и сложных ферментов. Субстратный, аллостерический и каталитический центры в строении простых и сложных ферментов.

    презентация , добавлен 07.02.2017

    Ферменты (энзимы) – каталитические белки. Характеристика, функция и принципы строения ферментов. Условия максимальной активности, кофакторы и коферменты. Распределение ферментов в организме. Диагностическое значение маркерных, секреторных и изоферментов.

    презентация , добавлен 28.11.2015

    Биологическое значение, классификация, изучение и регуляция каталитической активности ферментов биологической мембраны, их отличия от растворимых ферментов. Методы реконструкции белка. Функции липидов и методы изучения их влияния на мембранные ферменты.

    курсовая работа , добавлен 13.04.2009

    Характеристика биосинтеза как процесса образования органических веществ, происходящего в клетках с помощью ферментов и внутриклеточных структур. Участники биосинтеза белка. Синтез РНК с использованием ДНК в качестве матрицы. Роль и значение рибосом.

    презентация , добавлен 21.12.2013

    Ферменты, или энзимы - белковые молекулы или их комплексы, ускоряющие химические реакции в живых системах; коферменты и субстраты: история изучения, классификация, номенклатура, функции. Структура и механизм действия ферментов, их биомедицинское значение.

8.7.1. В клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. При помощи внутриклеточных мембран клетка разделена на отсеки или компартменты (рисунок 8.18). В каждом из них осуществляются строго определенные биохимические процессы и сосредоточены соответствующие ферменты или полиферментные комплексы. Вот несколько характерных примеров.

Рисунок 8.18. Внутриклеточное распределение ферментов различных метаболических путей.

В лизосомах сосредоточены преимущественно разнообразные гидролитические ферменты. Здесь протекают процессы расщепления сложных органических соединений на их структурные компоненты.

В митохондриях находятся сложные системы окислительно-восстановительных ферментов.

Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимосвязь дихотомического и апотомического путей распада углеводов.

В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи и катализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки.

В клеточном ядре локализованы в основном нуклеотидилтрансферазы, ускоряющие реакцию переноса нуклеотидных остатков при новообразовании нуклеиновых кислот.

8.7.2. Распределение ферментов по субклеточным органеллам изучают после предварительного фракционирования клеточных гомогенатов путем высокоскоростного центрифугирования, определяя содержание ферментов в каждой фракции.

Локализацию данного фермента в ткани или клетке часто удается установить in situ гистохимическими методами («гистоэнзимология»). Для этого тонкие (от 2 до 10 мкм) срезы замороженной ткани обрабатывают раствором субстрата, к которому специфичен данный фермент. В тех местах, где находится фермент, образуется продукт катализируемой этим ферментом реакции. Если продукт окрашен и нерастворим, он остается на месте образования и позволяет локализовать фермент. Гистоэнзимология дает наглядную и в известной мере физиологичную картину распределения ферментов.

Ферментные системы ферментов, сосредоточенные во внутриклеточных структурах, тонко координированы друг с другом. Взаимосвязь катализируемых ими реакций обеспечивает жизнедеятельность клеток, органов, тканей и организма в целом.

При исследовании активности различных ферментов в тканях здорового организма можно получить картину их распространения. Оказывается, что некоторые ферменты широко распространены во многих тканях, но в разных концентрациях, а другие очень активны в экстрактах, полученных из одной или нескольких тканей, и практически отсутствуют в остальных тканях организма.

Рисунок 8.19. Относительная активность некоторых ферментов в тканях человека, выраженная в процентах от активности в ткани с максимальной концентрацией данного фермента (Мосс, Баттерворт, 1978).

8.7.3. Понятие об энзимопатиях. В 1908 году английский врач Арчибальд Гаррод высказал предположение, что причиной ряда заболеваний может являться отсутствие какого-либо из ключевых ферментов, участвующих в обмене веществ. Он ввёл понятие "inborn errors of metabolism" (врождённый дефект обмена веществ). В дальнейшем эта теория была подтверждена новыми данными, полученными в области молекулярной биологии и патологической биохимии.

Информация о последовательности аминокислот в полипептидной цепи белка записана в соответствующем участке молекулы ДНК в виде последовательности тринуклеотидных фрагментов - триплетов или кодонов. Каждый триплет кодирует определённую аминокислоту. Такое соответствие называется генетическим кодом. Причём некоторые аминокислоты могут быть закодированы при помощи нескольких кодонов. Существуют также специальные кодоны, являющиеся сигналами для начала синтеза полипептидной цепи и его прекращения. К настоящему времени генетический код полностью расшифрован. Он является универсальным для всех видов живых организмов.

Реализация информации, заложенной в молекуле ДНК, включает несколько этапов. Сначала в клеточном ядре в процессе транскрипции синтезируется матричная РНК (мРНК), поступающая в цитоплазму. В свою очередь, мРНК служит матрицей для трансляции - синтеза полипептидных цепей на рибосомах. Таким образом, природа молекулярных болезней определяется нарушением структуры и функции нуклеиновых кислот и контролируемых ими белков.

8.7.4. Поскольку информация о структуре всех белков клетки содержится в последовательности нуклеотидов ДНК, а каждая аминокислота определяется триплетом нуклеотидов, изменение первичной структуры ДНК может в конечном счёте оказать глубокое влияние на синтезируемый белок. Подобные изменения происходят за счёт ошибок репликации ДНК, когда одно азотистое основание заменяется другим, либо в результате действия радиации или при химической модификации. Все возникшие таким образом наследуемые дефекты называются мутациями . Они могут приводить к неправильному считыванию кода и делеции (выпадению) ключевой аминокислоты, замене одной аминокислоты другой, преждевременной остановке белкового синтеза или добавлению аминокислотных последовательностей. Учитывая зависимость пространственной упаковки белка от линейной последовательности в нём аминокислот, можно полагать, что подобные дефекты способны изменить структуру белка, а значит, и его функцию. Тем не менее, многие мутации обнаруживаются только в лабораторных условиях и не оказывают вредного воздействия на функции белка. Таким образом, ключевым моментом является локализация изменений в первичной структуре. Если положение замененной аминокислоты окажется критическим для формирования третичной структуры и образования каталитического центра фермента, то мутация является серьёзной и может проявиться как заболевание.

Последствия недостаточности одного фермента в цепи реакций обмена веществ могут проявляться по-разному. Предположим, что превращение соединения A в соединение B катализирует фермент Е и что соединение C встречается на альтернативном пути превращений (рисунок 8.20):

Рисунок 8.20. Схема альтернативных путей биохимических превращений.

Последствиями недостаточности фермента могут быть следующие явления:

  1. недостаточность продукта ферментативной реакции (B ). В качестве примера можно указать на снижение содержания глюкозы в крови при некоторых формах гликогенозов;
  2. накопление вещества (A ), превращение которого катализирует фермент (например, гомогентизиновая кислота при алкаптонурии). При многих лизосомных болезнях накопления, вещества, в норме подвергающиеся гидролизу в лизосомах, накапливаются в них в связи с недостаточностью одного из ферментов;
  3. отклонение на альтернативный путь с образованием некоторых биологически активных соединений (C ). К этой группе явлений относится экскреция с мочой фенилпировиноградной и фенилмолочной кислот, образующихся в организме больных фенилкетонурией в результате активации вспомогательных путей распада фенилаланина.

Если метаболическое превращение в целом регулируется по принципу обратной связи конечным продуктом, то эффекты двух последних типов аномалий будут более значительными. Так, например, при порфириях (врождённых нарушениях синтеза гема) устраняется подавляющего эффекта гема на начальные реакции синтеза, что приводит к образованию избыточных количеств промежуточных продуктов метаболического пути, которые обладают токсическим действием на клетки кожи и нервной системы.

Факторы внешней среды могут усиливать или даже полностью определять клинические проявления некоторых врождённых нарушений обмена веществ. Например, у многих пациентов с недостаточностью глюкозо-6-фосфатдегидрогеназы заболевание начинается только после приёма таких лекарственных средств, как примахин. В отсутствие контактов с лекарственными средствами такие люди производят впечатление здоровых.

8.7.5. О недостаточности фермента обычно судят косвенно по повышению концентрации исходного вещества, которое в норме подвергается превращениям под действием данного фермента (например, фенилаланин при фенилкетонурии). Прямое определение активности таких ферментов проводят только в специализированных центрах, но по возможности диагноз следует подтверждать этим методом. Пренатальная (дородовая) диагностика некоторых врождённых нарушений метаболизма возможна путём иследования клеток амниотической жидкости, полученных на ранних стадиях беременности и культивируемых in vitro.

Некоторые врождённые нарушения метаболизма поддаются лечению путём доставки в организм недостающего метаболита или путём ограничения поступления в желудочно-кишечный тракт предшественников нарушенных процессов обмена веществ. Иногда могут быть удалены накапливающиеся продукты (например, железо при гемохроматозе).

Поделиться: