Наиболее продуктивные акватории мирового океана. Ресурсы Мирового океана: их виды и значение

Человеческое общество не может существовать без ресурсов, под которыми понимаются любые источники и предпосылки получения необходимых людям материальных и духовных благ, которые можно реализовать при существующих технологиях и социально-экономических отношениях.

Наряду с понятием “природные ресурсы” часто употребляют понятие “природные условия”. В широком смысле к природным условиям следует отнести всю совокупность элементов природы, в том числе и ресурсы. В узком смысле природные условия – это тела и силы природы, которые на данном этапе развития производительных сил существенны для жизни и деятельности человеческого общества, но не участвуют непосредственно в материальном и нематериальном производстве.

В понятие “природные ресурсы Мирового океана” включаются все элементы океаносферы, которые используются или могут быть использованы в производственных и непроизводственных отраслях. Природные условия Мирового океана – это элементы океаносферы, которые только влияют на жизнедеятельность человека. Различия между природными условиями и ресурсами относительные. Природные условия могут переходить в ресурсы. Человек превращает разрушительные силы природы, в естественные производительные силы, используя, например, энергию волн для получения электричества. В определенных условиях, само водное пространство рассматривается как ресурс для расселения, развития морского хозяйства.

Структура ресурсов Мирового океана очень сложная. Он представляет собой обширную, сложную динамическую систему, состоящую из океанической литосферы, гидросферы, атмосферы и биосферы. Каждая из них является источником ресурсов, используемых или потенциальных.

Объектами освоения литосферы являются поверхностный слой и недра морского дна. Здесь добываются полезные ископаемые, возводят различные инженерные сооружения.

В океанической гидросфере ресурсами выступают ее динамические свойства и процессы, позволяющие производить энергию, обеспечивать перевозку грузов и пассажиров, развивать марикультуру и рекреацию. Ресурсом является сам субстрат морской воды, используемый в промышленном производстве, сельском хозяйстве и быту. Из нее получают различные химические элементы и пресную воду. Одной из особенностей водных ресурсов океана как природного элемента является то, что они не могут быть полностью использованы. Вода обязательно должна участвовать в природном круговороте веществ как непременное условие поддержания жизни на Земле. Долгое время воспроизводство водных ресурсов считалось только естественным процессом, происходящим в природной среде. Теперь стало ясно, что способность воды к самоочищению ограничена и необходимы затраты труда и энергии на рациональное ведение водного хозяйства.


Океаническая атмосфера взаимодействует с гидросферой, во многом определяя характер протекающих в ней геофизических, геохимических и биологических процессов. Кроме того, ветровая энергия самой атмосферы издавна используется в парусном мореплавании.

Океаническая биосфера обеспечивает человека животными и растительными организмами, необходимыми в промышленном и сельскохозяйственном производстве, медицинской практике и т. д. Биологические ресурсы океана, так же как и вода, относятся к возобновимым ресурсам, но это не означает их вечного существования. Под воздействием человека происходит не только сокращение воспроизводства, но и нередко уничтожение того или иного биологического вида.

Особое значение в системе морского хозяйства имеет берег, или береговая зона, под которой понимается единство территории и акватории. Ресурсообразующим фактором в данном случае выступает протяженность побережья, а параметрами и свойствами береговой зоны – наличие пляжей, извилистость линии уреза, особенности взаимодействия суши и воды, ширина береговой зоны и т. д. Используются эти ресурсы многие отрасли морского хозяйства, в том числе и рекреация.

Для рационального использования, обоснования порядка первоочередности разработки природных ресурсов необходима их комплексная оценка. Одним их универсальных способов такой оценки является воспроизводственный подход, в рамках которого каждый ресурс и вся система оцениваются по затратам на искусственное воссоздание того или иного объекта при равном количестве и эквивалентном качестве в условиях интенсивного производства.

Оценка ресурсов океана во многом определяется их наличием на суше. Использование морских ресурсов экономически обосновано, если затраты на производство сравнимой продукции меньше, чем на суше. Но при абсолютном дефиците того или иного ресурса на суше его промышленное освоение в океане может быть целесообразно, даже если затраты будут больше, чем на суше. Сравнительные расчеты экономической эффективности использования морских ресурсов должны учитывать перспективность их эксплуатации в сравнении с сухопутными аналогами. Разработка некоторых морских ресурсов в настоящее время может быть нецелесообразной, но расчеты позволяют определить условия, при которых она наступит.

Оценка морских ресурсов особенно необходима при определении эффективности крупных мероприятий по освоению ресурсов и преобразованию природной среды. Так как их осуществление связано с неизбежными потерями части природных богатств и локальным ухудшением условий жизни людей. Стоимостная оценка не может быть единственным критерием в решении вопроса комплексного и рационального использования природных ресурсов. При оценке природных ресурсов следует исходить из рационального природопользования в условиях океана. Под этим понимается геоэкологически сбалансированное хозяйствование, чуждое потребительскому максимализму и основанное на равнозначном сочетании потребления, охраны и воспроизводства, биологических, рекреационных и других ресурсов. Только в этом случае человеческое общество вправе рассчитывать на гармоничную коэволюцию с природой.

Ресурсы Мирового океана делятся на не возобновимые, запасы, которых не воспроизводятся в темпах сравнимых с темпами развития человечества, и возобновимые, которые воспроизводятся ходом установившихся на Земле естественных процессов и характеризуются определенным соотношением между ежегодным приходом и расходом, включая использование их человеком. Применительно к использованию природных ресурсов Мирового океана в хозяйственной деятельности они подразделяются на следующие типы: биологические, сырьевые (минеральные, химические, водные), энергетические и рекреационные.

Биологические ресурсы Мирового океана. Под биологическими ресурсами океана понимаются запасы морских растений и животных, которые при существующих знаниях, развитии техники экономически целесообразно использовать в хозяйственном обороте для удовлетворения потребностей общества без ущерба для их естественного воспроизводства.

Во все времена, начиная с первобытного общества, добыча и переработка биологических ресурсов были важной частью человеческой деятельности. Ежегодно в океане вылавливается около 80-90 млн. т. морепродуктов. Из них 30-35 млн. т. перерабатывается на кормовую муку для животных, а остальные составляют всего около 1% продовольствия производимого на планете. Сейчас продукты питания, получаемые из водной среды, в мире составляют 24 % белка животного происхождения значительно уступая молочным (43 %) и мясным (35 %) продуктам. В тоже время только нектонные животные каждый год продуцируют до 40 млн. т. белка, 8 млн. т. жиров (в 2 раза больше чем дает мировое животноводство) и 2 млн. т. углеводов.

В оценке пищевых ресурсов океана сталкиваются два противоречивых направления. С оной стороны, не изжито мнение о неистощимости ресурсов, что на практике неоднократно приводило к перелову некоторых видов рыб и других морских животных, а иногда и к исчезновению их как биологического вида. С другой стороны много прогнозов скорого достижения пределов возможного улова. Поэтому важно знать биологическую продуктивность океана, всех его трофических уровней и конечных звеньев, составляющих основу потребления человека.

Для оценки растительных и животных ресурсов океана важно не только подсчитать запасы биомассы в акватории, но и определить ее прирост в единицу времени.

Различают первичную продукцию, когда органическое вещество синтезируется из минеральных веществ, и вторичную – образуемую всеми организмами, питающимися органическим веществом непосредственно или в процессе поедания друг друга.

При продуцировании возникают полезные, бесполезные и вредные для человека организмы. Качество организмов, степень их полезности отражает эволюцию интересов человека и возможностей их удовлетворения, оно зависит от народных традиций, социальных условий, уровня цивилизации и технического прогресса.

Первичной основой биологической продуктивности всего океана служат бактерио- и фитопланктон. В результате фотосинтетически активной деятельности растений в водоемах создается запас энергии, за счет, которого живут все организмы. Кроме фотохимических процессов в океане происходят ассимиляционные, вызываемые бактериями. Которые служат важным элементом питания для зоопланктона и рыб на личиночной стадии развития.

На развитие фитопланктона существенное влияние оказывает поступление биогенных веществ, освещенность и температура воды. Основная масса фитопланктона находится в верхнем слое воды (до 100-150 м). Наибольшее его количество сосредоточено в районах умеренных и субполярных широт, сравнительно узкой экваториальной полосе, прибрежных районах и зонах апвеллинга. Высокая биопродуктивность этих районов объясняется интенсивным вертикальным и горизонтальным перемешиванием вод, доставляющих биогенные вещества в верхний, фотический слой океана. Общая масса ежегодно образуемого в океане фитопланктона достигает 1200 млрд. тонн, основу которого (80-90 %) составляют перидинеи и диатомеи.

Основу фитобентоса составляют макрофиты. Это бурые, красные, зеленые водоросли и некоторые из высших цветковых растений. В течение года они продуцируют массу, равную своей биомассе – около 0,2 млрд. тонн. Макрофиты не имеют определяющего значения в процессе дальнейшего создания органического вещества в океане, но употребляются человеком в пищу, используются на корм домашнему скоту, в качестве удобрений, лекарственных средств, ингредиентов хлеба, конфет, консервированного мяса, различных эмульсий, сырья для получения поташа и йода, соды и т. д.

Фитопланктон является кормом для большинства видов зоопланктона, но не для всех, так как некоторые виды питаются бактериями или зоопланктоном. Из более чем 2000 видов планктонных животных наиболее широко представлены ракообразные (1200 видов) и кишечнополостные (400 видов). Зоопланктон, как и фитопланктон, обитает главным образом в поверхностных горизонтах океана. Он совершает постоянные суточные и сезонные миграции. Биомасса зоопланктона составляет примерно 20-25 млрд. тонн, годовая продукция – до 60 млрд. тонн.

Запасы зообентоса – животных (без рыб), обитающих на дне или у дна океана, в основном в зоне шельфа, – оцениваются в 10 млрд. т. Годовая продукция его низкая около 3,3 млрд. т. Многие виды бентальных организмов не используются в пищевых цепях, не являются кормом для рыб и млекопитающих. Биомасса животного бентоса, способного участвовать в продуцировании полезных для человека организмов или поступающего непосредственно в пищу человека, составляет примерно 2 млрд. тонн, а ежегодная продукция около 1 млрд. тонн.

Как правило, последними звеньями пищевой цепи, которые непосредственно используются человеком, являются нектонные животные – крупные представители морской фауны, обладающие способностью активно перемещаться в воде на значительные расстояния. Нектон в основном представлен рыбами, млекопитающими, головоногими моллюсками (главным образом кальмарами) и высшими раками (наиболее многочисленные из них – креветки). Ориентировочная оценка суммарного количества нектона составляет 1 млрд. тонн, половина которого приходится на рыб. Годовая продукция нектона около 360 млн. тонн. Всего в Мировом океане насчитывается около 16 000 видов рыб. Из них всего 800 являются объектами морского промысла, и только 76 видов рыб составляют 56 % мирового улова.

Биологическая продуктивность океана – основа пищевых ресурсов, которые предоставляет океан человеку и которые могут быть им использованы. Основные направления повышения эффективности их использования связаны с научными исследованиями биоты океана, разработкой его комплексной биологической модели, нахождением новых промысловых районов в открытой части океана и мелководных районах, совершенствованием орудий лова, выявлением новых объектов промысла и развитием марикультуры.

Сырьевые ресурсы Мирового океана. В морской воде содержится 76 элементов таблицы Менделеева. На 11 из них приходится 99,98 % массы всех солей растворенных в океане. Это прежде всего хлор (19 г/л), его больше всего в виде хлоридов, далее натрий (11 г/л), сера в различных соединениях (3 г/л), магний (1,3 г/л), кальций (0,4 г/л), калий (0,4 г/л), соединения углерода, стронция, брома, фтора и бора. Кроме того, в морской воде растворены органические и биогенные вещества, а также газы (кислород, азот, сероводород, аргон и др.). Стоимость всех веществ, содержащихся в 1 км 3 воды, превышает 1 млрд. долл. США. Запасы только хлора в океане составляют 29,3 · 10 15 тонн, натрия – 16,3 · 10 15 тонн. Поэтому морскую воду часто называют “рудой будущего”.

Наиболее древним промыслом минеральных ресурсов из морской воды является добыча поваренной соли. Еще до нашей эры египтяне добывали соль из вод Средиземного моря. До сих пор примерно треть мирового потребления соли (около 35 млн. тонн) обеспечивается за счет выпаривания ее из морской воды. Добыча поваренной соли происходит, как правило, древним способом, с использованием солнечной энергии в осадочных бассейнах. Для получения 1 млн. тонн соли требуется испарить примерно 120 млн. тонн морской воды. Поваренная соль не только ценный пищевой продукт. Она используется для изготовления соляной кислоты, при производстве стекла, мыла, бумаги, очистки жиров, плавке металлов и т. д. Запасов соли в океане хватит на миллиарды лет.

Морская вода и отложения солей высохших морей являются основным источником получения брома. Современная добыча брома в мире достигает 100 тыс. тонн в год. Он широко применяется в качестве антидетонационного средства, в производстве красителей, лекарств, фотореактивов, огнетушителей и т. д.

Концентрация магния в морской воде в 300 раз меньше, чем в земных рудах, однако уже теперь производство магния из воды обходится дешевле, чем из твердых руд. Впервые магний из морской воды стали добывать в Англии в 1916 году. Сейчас из нее получают около 40 % потребляемого в мире магния. Магний и магниевые соединения широко используются в самолето- и ракетостроении, в строительстве, черной и цветной металлургии, в фармацевтической, легкой промышленности и сельском хозяйстве.

Развитие атомной энергетики резко повысило спрос на уран. Его запасы на суше составляют всего 800 тысяч тонн. В морской воде содержится около 4 млрд. тонн урана. Во многих странах патентуются различные способы извлечения урана из морской воды. Предполагается, что к 2000 году треть урана будет добываться из моря.

В ряде стран пытаются найти “дешевые” способы добычи золота из морской воды. В ней растворено 10 млн. тонн золота, тогда как на суше его запасы составляют всего 35 тысяч тонн. Один из способов добычи золота при помощи установок с ионообменными смолами позволяет получить примерно 1 мг золота из 500 тысяч литров воды. При этом способе добычи золота издержки в несколько тысяч раз выше доходов. Перспективнее может быть добыча серебра, поскольку его концентрация в морской воде в 60 раз выше, чем золота. В океане растворено 600 млн. тонн серебра. Его запасы на суше всего 130 тыс. тонн.

Добывать из морской воды минеральное сырье при концентрации его ниже, чем концентрация бора (4, 6 мг/л), в том числе золота и серебра, при современной технологии невыгодно. Идет поиск новых способов извлечения ценных микроэлементов, в том числе биохимических методов. Морские животные и растения обладают способностью поглощать и концентрировать в своем организме некоторые химические элементы. Добыча йода из морской среды осуществляется путем переработки водорослей, накапливающих его в сотни раз больше, чем содержится в воде. Обнаружены значительные концентрации кобальта и радиоактивного плутония-239 в теле морских раков (омаров и лангустов), ванадия – в тканях голотурий и асцидий, меди – в клетчатке устриц, цинка, олова и свинца – в тканях медуз. Не исключено, что в скором времени будут создаваться заводы-фермы для получения минеральных элементов. Перспективно получение микроэлементов из горячих рассолов в зоне подводных гидротерм приуроченных к рифтовым разломам морского дна. Концентрация в рассолах железа, марганца, цинка, свинца, меди, золота, серебра и других металлов в тысячи раз превосходит их содержание в морской воде. В Японии разработаны методы добычи лития, рубидия и цезия из побочных продуктов производства поваренной соли из морской воды. Эти металлы применяются в ракетной, ядерной, радиоэлектронной технике.

В морской воде, помимо растворенных веществ, имеется огромное количество взвешенных частиц. В форме коллоидной взвеси в океане находится значительная часть золота, марганца, свинца, железа, кремнезема, кобальта и т.д. Пока не найдены эффективные способы извлечения взвешенных частиц минералов, но ведутся интенсивных научные исследования в этой области.

С начала ХХ века резко возросло потребление пресной воды. Оно достигло почти 4000 км 3 в год, а в ближайшие 20-30 лет возрастет не менее чем 1,5 раза. Стремительный рост населения Земли, увеличение потребления пресной воды сельским хозяйством и промышленностью превратили проблему дефицита воды из локальной в глобальную. В решении этой проблемы все большую роль отводят морским ресурсам.

Созданием промышленных опреснительных установок стали заниматься только в конце ХIХ – начале ХХ веков. Дистилляционный метод опреснения воды хорошо и выгодно сочетается с производством электроэнергии на двухцелевых атомных водоэлектростанциях. Наряду совершенствованием дистилляционного метода разрабатываются и применяются другие способы получения пресной воды: путем естественного и искусственного вымораживания (газогидратный метод); химические процессы ионообмена (реагентные методы); экстракционные процессы; с применением мембран (электродиализ); биологические методы. Технический прогресс в способах и методах опреснения воды обусловил резкое снижение себестоимости ее производства. Сейчас объем опресненных морских вод в мире достигает до 40 млн. м 3 воды в сутки.

Значительные ресурсы пресной воды содержатся в материковых и шельфовых льдах. Они сосредоточены в основном в Антарктиде и составляют около 24 млн. км 3 . Ледовый материк посылает ежегодно в океан в виде айсбергов 2800 км 3 льда, что соответствует 2400 км 3 пресной воды. Вопрос о транспортировке айсбергов, с целью получения пресной воды, неоднократно обсуждался на различных международных форумах. Предложено много вариантов решения этой задачи. Существуют и другие проекты доставки воды с ледяных куполов Антарктиды и Гренландии. Но еще не настало время широкого использования пресных ледниковых вод. Их огромные запасы являются важнейшим резервом человечества.

О морских месторождениях нефти знали давно. В 1824 году в районе Баку в 20-30 метрах от берега сооружали колодцы, изолированные от воды, и черпали нефть из неглубоко залегающих горизонтов. В 1870 году в окрестностях города Идзумосаки в Японии был намыт остров для нефтяных вышек. В 1891 году на калифорнийском побережье началось бурение наклонных скважин, уходивших на расстояние до 200 метров от берега. В 1933 году в заливе Маракайбо была пробурена первая морская подводная нефтяная скважина.

Сейчас нефтяные и газовые месторождения открыты в 50 странах, добычу ведут 25 стран. Глубины разведочного бурения достигли 2500 метров, а эксплуатационные работы ведутся на глубинах до 1000 метров. В 1985 году доля морской нефти в общей мировой добыче составила 28, 4 %, а доля газа – 20 %. К 2000 году половина нефти и газа поступят из недр Мирового океана. Разведку и добычу нефти и газа обслуживает большой специализированный флот, насчитывающий более 3500 судов и парк вертолетов в 2000 единиц. Воздвигнуто более 10 000 нефтяных платформ, устанавливаются огромные подводные нефтехранилища, быстро растет сеть подводных трубопроводов, достигшая 30 000 миль. Началось строительство нефте- и газоперерабатывающих заводов непосредственно в море на искусственных островах.

Морская добыча нефти требует огромных капитальных затрат. Стоимость одной современной буровой установки, в зависимости от конструкции, колеблется от 25 до 180 млн. долларов, а нефтяной платформы достигает 2 млрд. долларов США. Величина расходов зависит от глубины моря, геологических, гидрологических, метеорологических, ледовых и других факторов. Бурение одной скважины в Мексиканском или Персидском заливе обходится около 1 млн. долларов, а в море Бофорта и Беринговом – до 70-90 млн. долларов США. Однако суммарные валовые доходы от реализации морской нефти в 4 раза превышают затраты.

Наиболее старым и освоенным районом морской добычи нефти и газа является акватория Мексиканского залива. У американского побережья залива открыто около 700 промышленных скоплений нефти, что составляет 50 % всех месторождений известных в Мировом океане. Вторым старейшим районом морской добычи углеводородов является лагуна Маракайбо. Первое место в морской добыче нефти занимают страны Персидского залива. Совместно с прилегающей сушей Аравийского полуострова залив содержит более половины общемировых запасов нефти. Значительным нефтегазоносным районом является акватория Северного моря. В ряд крупнейших и перспективных регионов нефтедобычи становится Западная Африка. Перспективно освоение нефтегазовых ресурсов континентального шельфа КНР. Очень богаты углеводородами месторождения у берегов Калифорнии, Индонезии, Индокитая, шельфовой зоны Австралии, залива Кука (Аляска), Канадского Арктического архипелага, Северного Ледовитого океана и Каспийского моря.

По различным источникам, оценки потенциально извлекаемых морских ресурсов нефти и газа в пересчете на нефть колеблются от 100 до 311 млрд. тонн, из них 68 % залегают на глубинах до 200 метров.

Перспективными могут оказаться, недавно открытые, газогидратные залежи на поверхности дна и в илистом придонном грунте глубоководных котловин океана. Газогидраты – соединения углеводородных газов с водой, находящиеся в сильно сжатом состоянии. По физическим свойствам они похожи на лед. Один кубометр гидрата содержит 200 м 3 газа. Общие запасы твердого горючего газа на дне океана в сотни раз превышают запасы угля, нефти и газа во всех разведанных на сегодняшний день месторождениях. Таким образом, структура и объем потенциальных ресурсов углеводородов благоприятны для развития нефтегазовой промышленности в Мировом океане.

Твердые полезные ископаемые. Залежи твердых полезных ископаемых подразделяются на коренные, встречающиеся на месте своего первоначального залегания, и россыпные, которые образуются, в основном, в результате выноса обломочного материала реками, вблизи береговой линии на суше и мелководье. Коренные, в свою очередь, подразделяются на погребенные, которые извлекаются из недр дна, и поверхностные, расположенные на дне в виде конкреций, илов и т. п.

Наибольшее значение после нефти и газа в настоящее время имеют россыпные месторождения металлоносных минералов, алмазов, строительных материалов и янтаря. По отдельным видам сырья морские россыпи имеют преобладающее значение. Они поставляют на мировой рынок 100 % циркония и рутила, 80 % ильменита и более 40 % касситерита. Ведущее место в добыче россыпных металлоносных минералов принадлежит Австралии. Вдоль ее восточного побережья россыпи тянутся на полторы тысячи километров. Они содержат около 1 млн. тонн рутила, 1,4 млн. тонн циркона и 30,0 тыс. тонн монацита. Богатые ильменит-цирконовые россыпи найдены у берегов Африки, Бразилии, США, Новой Зеландии, Индии, Шри-Ланка. Титано-магнетитовые и магнетитовые месторождения разрабатываются у острова Хонсю в Японии, на побережье Новой Зеландии и штата Вашингтон в США, в Балтийском и Черном морях, у о. Итуруп и других регионах. Из этих минералов получают цирконий, титан, гафний и другие металлы, имеющие большое стратегическое значение. Они используются в ядерной энергетике, электронной технике, при производстве жаропрочных и тугоплавких сплавов для авиации и ракетной техники.

Большое внимание в мире уделяется добыче касситерита – оловянной руды. Сейчас из океана получают 10 % мировой добычи олова. Его основные месторождения расположены в прибрежной зоне стран Юго-Восточной Азии, Австралии, Тасмании, Великобритании и других районах.

На юго-западном побережье Африки эксплуатируются алмазоносные пески, которые дают 5 % объема и 20 % валовой стоимости мировой добычи алмазов. Они так же добываются у берегов Намибии, Анголы, Сьерра-Леоне. Золотоносные пески морских побережий, особенно Золотого Берега вблизи города Ном (Аляска), хорошо известны еще со времен “золотой лихорадки”. С 1964 года разрабатывается россыпь Ном Чолд Кост с содержанием золота 15 г/м 3 . Общие запасы золота в этом районе оцениваются в 37,7 тонн (с содержанием не ниже 0,25 г/м 3). Известны золотоносные пески вдоль побережий Калифорнии, Панамы, Чили, Турции, Египта, Юго-Западной Африки. С 1935 года в заливе Гудньюс (Аляска) при глубине моря 30 метров разрабатываются платиновые пески с содержанием платины до 10 г/м 3 . В США до 90 % платины получают с морского дна.

Янтарь, предмет украшения и ценное сырье для химической и фармацевтической промышленности, встречается на берегах Балтийского, Северного и Баренцева морей. В промышленных масштабах янтарь добывается в России, в наибольших количествах его собирают на пляжах Польши.

Среди нерудного сырья в шельфовой зоне представляют интерес глауконит, фосфорит, пирит, доломит, барит, строительные материалы – гравий, песок, глина, ракушечник. Ресурсов нерудного сырья хватит на тысячи лет. Интенсивной добычей строительных материалов в море занимаются многие прибрежные страны.

В последние годы обозначились благоприятные перспективы добычи коренных залежей морских недр шахтно-рудничным способом. Известно более сотни подводных шахт и рудников, заложенных с берега материков, естественных и искусственных островов для добычи угля, железной руды, медно-никелевых руд, олова, ртути, известняка и других полезных ископаемых погребенного типа. Некоторые из рудников и шахт достигают глубин 2400 метров ниже уровня моря, удалены от берега на расстояние до 8 км в море с глубинами до 120 метров.

Из подводных месторождений в настоящее время добывают уголь – у берегов Канады, Японии, Великобритании, Новой Зеландии, Австралии; железную руду – у остова Ньюфаундленд, в прибрежной зоне Японии, Франции, Финляндии и Швеции; медь и никель – в Гудзоновом заливе; олово – у полуострова Корнуолл в Англии; ртуть – у побережья Турции в Эгейском море; серы – у берегов Луизианы в США.

Значительные минеральные ресурсы залегают в глубоководных районах океана. Горячие рассолы и илы с богатым содержанием металлов (железа, марганца, цинка, свинца, меди, серебра, золота) обнаружены в глубоководной части Красного моря. Концентрация этих металлов в горячих рассолах превышает их содержание в морской воде до 50 · 10 3 раз. Их запасы в металлоносных илах Красного моря оцениваются в 130 млн. тонн. В верхнем 30 метровом слое осадков здесь содержится золота, меди, цинка и серебра на 2-3 млрд. долларов США.

Более 100 млн. км 2 океанического дна покрыто слоем красной глубоководной глины мощность до 200 метров. Они содержат 15-20 % окиси алюминия, 13 % окиси железа, а также марганец, медь, никель, ванадий, кобальт, свинец. Запасы красных глин оцениваются в 10 000 трлн. тонн, а их годовой прирост – в 500 млн. тонн. Широко распространены в Мировом океане глауконитовые пески (алюмосиликаты калия и железа), известковые и кремнистые илы. Запасы известняковых донных отложений (глобигериновых, фораминиферовых) оцениваются в 10 000 трлн. тонн, а кремнистых (диатомовых) – в 10 трлн. тонн.

Особый интерес в мире проявляется к конкрециям. Огромные участки морского дна устланы железомарганцевыми, фосфоритовыми и баритовыми конкрециями. Они имеют чисто морское происхождение, образовались в результате осаждения растворимых в воде веществ на каком-либо субстрате.

Фосфоритовые конкреции содержат минерал – фосфорит, широко применяемый в качестве удобрения в сельском хозяйстве. Кроме фосфоритовых конкреций фосфориты и фосфоритосодержащие породы встречаются в фосфатных песках и пластовых залежах на разных глубинах океана. Мировые потенциальные запасы фосфатного сырья в океане оцениваются в сотни миллиардов тонн. Промышленные запасы фосфоритов найдены вблизи калифорнийского и мексиканского побережья, вдоль береговой зоны Южной Африки, Аргентины, восточного побережья США, в шельфовых частях периферии Тихого океана, у берегов Новой Зеландии, в Балтийском море. Значительны запасы фосфоритов обнаружены в центральных частях океанов.

Баритовые конкреции, содержащие 75-77 % сульфата бария, используемого в химической и пищевой промышленности, найдены у берегов Шри-Ланки, в Японском море и других районах.

Железомарганцевые конкреции известны более 100 лет. Они устилают дно во многих районах Мирового океана, но наиболее ценные и перспективные их месторождения расположены в Тихом океане. В состав этих конкреций входит множество металлов: марганец, медь, кобальт, никель, железо, магний, алюминий, молибден, ванадий, всего до 30 элементов, но преобладают железо и марганец. Запасы железомарганцевых конкреций оцениваются в 2-3 трлн. тонн. Они превышают запасы, имеющиеся на суше по кобальту в 5 000 раз, марганцу – в 4000, никелю – в 1500, алюминию – в 200, меди – в 150, молибдену – в 60, свинцу – в 50 и железу – в 4 раза. В США, Японии и других странах разработаны гидравлические и механические способы добычи железомарганцевых конкреций. Созданы глубоководные аппараты с видеосистемами, буровыми приспособлениями, с дистанционным управлением, расширившие возможности их изучения. Многие специалисты предрекают добыче железомарганцевых конкреций блестящее будущее, утверждая, что их массовая добыча положит конец горнодобывающей промышленности на суше. Однако на пути к освоению конкреций стоят еще многие нерешенные технические, эксплуатационные, экологические и политические проблемы.

Энергетические ресурсы Мирового океана. Проблемы энергетических запасов Земли стали особенно актуальными в начале 1970 годов, когда многие промышленно развитые страны ощутили недостаток энергетических ресурсов. Сегодня в мировом энергетическом балансе 97 % потребностей покрывается за счет не возобновляемых ресурсов. При прогнозируемых среднегодовых темпах роста потребления энергии (4 %) мировые запасы угля, нефти и газа будут исчерпаны примерно через 150 лет. Оценить запасы ядерного топлива значительно сложнее, но и они не безграничны. Определенные надежды связывают с работами в области термоядерной энергетики. Но у ядерной и термоядерной, как и у топливной, имеется существенный недостаток – передача части преобразуемого тепла в атмосферу. Ученые считают, что если количество этой “искусственной” тепловой энергии достигнет 5 % от поступающей на Землю солнечной радиации, то могут произойти необратимые изменения теплового баланса и климата на Земле. Переживаемые трудности и требования завтрашнего дня определяют структурные изменения в мировом энергетическом хозяйстве. Человечество вынуждено все чаще обращаться к возобновляемым, экологически чистым энергетическим ресурсам, определяемым электромагнитным излучением солнца, теплом земных недр и гравитационных сил, обусловленных движением Луны и Солнца. Во всем мире широко ведутся работы в области солнечной, ветровой и геотермальной энергетики. Значительная роль в энергетике будущего отводится и возможности использования энергии Мирового океана.

Общая возобновляемая энергия Мирового океана включает в себя энергию различного вида. Это энергия ветра, волн, приливов, океанических течений, температурного градиента, градиента солености и биомассы морских водорослей. Оценки энергозапасов каждого вида энергии океана, как суммарных так и допустимых для преобразования, существенно различаются. Практически необходимо использовать энергоресурсы Мирового океана в таких пределах, чтобы преобразование энергии не приводило к необратимым изменениям окружающей среды.

Современное потребление всех видов энергии в мире составляет примерно 10 миллиардов тонн условного топлива в год (т у.т /год). В то же время прогресс технической мысли в перспективе позволяет за счет энергии, запасенной в океане, получить не менее 200 млрд. т у.т/год, т.е. практически решить энергетическую проблему на ближайшее столетие. Однако сделать это не просто. Концентрация энергии водных масс очень низка, и для получения требуемого количества тепла и электричества необходимо строить крупные сооружения, способные перерабатывать огромные объемы воды. Большие технические трудности определяются также неравномерной и случайной по характеру энергоотдачей, обусловленной изменчивостью океанической среды.

Исследования по энергетике океана активно проводятся с начала 1970 годов в США, Японии, Франции, Великобритании, Норвегии и ряде других стран. В настоящее время во многих странах осуществляются научно-технические программы, предусматривающие изучение энергетических ресурсов океана, созданы демонстрационные и промышленные океанические энергетические установки.

Выделяется пять основных возобновляемых источников энергии Мирового океана с потенциальными запасами: течения – 0,05 ТВт, волнение – 2,7 ТВт, приливы – 0,03 ТВт, температурный градиент – 2,0 ТВт и градиент солености – 2,6 ТВт. 1 ТВт равен 10 12 Вт, что соответствует суммарной мощности всех электростанций земного шара в настоящее время.

В настоящее время, из рассматриваемых источников энергии океана, практически используется в большой энергетике лишь энергия приливов. Принцип получения в этом случае довольно прост. Дамбой отгораживают вдающийся в сушу морской залив, где наблюдаются высокие приливы. В дамбе оставляют проход и устанавливают в нем турбину. Во время прилива вода проходит через проход в залив, а во время отлива – из залива. В обоих случаях она вращает турбину и вырабатывается электроэнергия. При благоприятном очертании берегов и большой высоте прилива такая электростанция обладает экономической эффективностью, сравнимой с обычными речными ГЭС. В 1967 году во Франции около города Сен-Мало в эстуарии реки Ранс бала построена первая в мире приливная электростанция (ПЭС) мощностью 240 тыс. кВт. В России первая ПЭС мощность 400 тыс. кВт была построена в 1968 году в 100 км от Мурманска в горле губы Кислой. После Кислогубской ПЭС в 1984 году ПЭС была построена в Канаде, а 1985 году в Китае в устье р. Цяньцзян. Разработаны проекты ПЭС в заливах Сен-Мало (12 млн. кВт), Фанди (6 млн. кВт), Лумбовка на Кольском полуострове (700 млн. кВт), Пенжинской губе Охотского моря (100 млн. кВт) и т. д.

Идея преобразования тепла океана в электрическую энергию принадлежит современнику Жуль Верна физику д’Арсонвалю, опубликовавшему в 1881 году статью о возможности использования для этой цели установок двух типов – замкнутого цикла с промежуточным рабочим телом и открытого цикла, работающего непосредственно на морской воде. В ОТЭС, работающих по замкнутому циклу Ренкина, теплые поверхностные воды прокачиваются насосом через теплообменник испарителя, превращая в пар рабочее тело с низкой температурой кипения (аммиак, фреон, пропан). Пар повышенного давления проходит через турбину в холодильник, где конденсируется при контакте с поверхностью другого теплообменника, охлаждаемой путем прокачки холодной воды, которая поднимаемой по трубам с помощью насоса с глубины 700-900 м. При разности температуры воды в 24 °С, характерной для тропических широт океана, около 80 % вырабатываемой электроэнергии расходуется на работу насосов и вспомогательного оборудования. Таким образом, эффективность ОТЭС с учетом собственных нужд в тропиках составляет не более 25 %. При разности температуры воды в 20 °С теоретически КПД ОТЭС замкнутого цикла не превышает 7 %.

В ОТЭС, работающих по открытому циклу Клода, теплая морская вода подается в испаритель через деаэратор, освобождающий ее от растворенных в ней газов, а затем доводится до кипения снижением давления до 0,03 кГс/см 2 . Образующийся при этом пар вращает турбину и затем конденсируется, контактируя с теплообменником, охлажденным водой, подаваемой насосами из глубин океана. В настоящее время предпочтение отдается ОТЭС открытого типа. Стоимость электроэнергии ОТЭС 6-8 центов/кВт×ч, что соизмеримо с 2-3 центами/кВт×ч стоимости для ТЭС (угольных) и значительно дешевле стоимости электроэнергии солнечных установок (2 дол/кВт×ч). Первую опытную ОТЭС мощность 22 кВт сконструировал ученик д’Арнсонваля французский инженер Ж. Клод и в 1928 году испытал ее на северном побережье Кубы. Сейчас ОТЭС работают в Японии, США, Франции, Великобритании и других странах. Ведутся интенсивные научные исследования в этой области.

Первый в мире патент на устройство, использующее энергию волн, был выдан французам – отцу и сыну Жерарам в 1799 году. Одна из первых, практически действующих волновых установок, предназначенных для подачи воды в водонапорную башню, начала работать в 1889 году на побережье недалеко от Нью-Йорка. Сложность реализации многочисленных проектов преобразования энергии волн определяется низкой концентрацией энергии, непостоянством ее в пространстве и времени, широким спектром колебаний, агрессивностью океанической среды и значительными трудностями в передаче энергии на берег. Все волновые установки условно делятся на два контура: первичный, обеспечивающий непосредственное извлечение и передачу энергии волны рабочему органу, и вторичный, преобразующий извлеченную энергию к виду, удобному для потребителя. В первичном контуре используются различные физические волновые эффекты, такие, как изменение уровня воды относительно стационарно помещенного тела; периодическое изменение наклона волновой поверхности; гидродинамическое давление жидкости на преобразователь; переменное гидростатическое давление, действующее на установку. В качестве рабочего органа используется элемент конструкции установки, газ или жидкость, в том числе воздух или морская вода. Вторичный контур может состоять из нескольких ступеней, в которых, на определенных этапах, передача энергии выполняется механическим, гидравлическим или пневматическим способом. Преобразователями энергии могут служить воздушные и гидравлические турбины, гидромоторы, пьезоэлектрические генераторы, индукционные электрические машины и электрогенераторы. В настоящее в США, Японии, Швеции, Китае и многих странах осуществляются крупные научно-технические программы связанные с проблемой извлечения энергии из морских волн.

Значительной плотностью концентрации энергии в океане, наряду с амплитудой температуры, отличаются источники энергии, связанные с градиентами солености морской воды. Известны следующие способы преобразования энергии градиента солености: осмотический, при котором используется осмотический поток воды через полупроницаемую мембрану, разделяющую растворы разной концентрации; обратного электролиза, когда используется направленная диффузия ионов через катионообменную и анионообменную мембраны к электродам; адиабатного расширения пара, когда разность давлений водяного пара над растворами разных концентраций срабатывается в вакуумной паровой турбине; электрохимический, при котором электрический ток возникает между обратимыми электродами, помещенными в морскую и пресную воду, потоки, которых разделены пористой перегородкой; механико-химический, когда используется циклическое сжатие – расширение некоторых полимеров при соприкосновении с растворами разной концентрации; замораживания, когда используется увеличение объема или давления при замораживании пресной воды путем использования более холодной морской воды.

Предполагаемая стоимость электроэнергии, которую можно получить при использовании градиента солености морской воды около 3-4 центов/кВт×ч. С 1979 года в США, Швеции, Японии, Израиле и других странах ведутся научные разработки программ и проектов в этой области, созданы опытно-промышленные установки по использованию энергии градиента солености морской воды.

В настоящее время существуют многочисленные проекты использования энергии морских течений для большой и малой энергетики. Большинство из них основано на использовании лопастных рабочих колес с вертикальной или горизонтальной осью вращения, погруженных в поток воды. При этом широко реализуются идеи ветроэнергетики – турбина Дарье, ротор Савониуса, а также горизонтальные гидротурбины и другие типы водяных двигателей.

В решении мировых энергетических проблем все больше внимания уделяется использованию водорода, как вероятной замене жидкого топлива и природного газа. В Японии разработаны установки по производству водорода из морской воды. Практически неисчерпаемым источником энергии является термоядерный синтез с применением дейтерия – тяжелого водорода. В океане содержится около 2,5 · 10 13 тонн дейтерия. Количество тяжелого водорода, которое содержится в 1 литре воды, может дать столько энергии, сколько 120 литров бензина. Развитие термоядерной энергетики позволит значительно увеличить использование энергоресурсов Мирового океана.

Еще одно очень интересное направление – океаническая биоэнергетика, позволяющая “выращивать” топливо в океане. Огромное количество солнечной энергии накапливают бурые водоросли, которые в естественных условиях вырастают на 60 сантиметров в день, достигая длины до 60 метров. В последнее десятилетие их зеленая масса стала потенциальным источником получения метана – заменителя природного газа.

Мировой океан – это наша колыбель и будущее. Человек всегда мечтал подчинить себе его могучую энергию. В наши дни фантазия воплощается в реальность. Главное преимущество энергии океана в относительной неиссякаемости ее источников. Кроме того, преобразование всех видов энергии Мирового океана и их использование происходит без выделения тепла в окружающую среду в отличие от существующих в настоящее время традиционных энергетических установок на химическом и ядерном топливе. Что касается возможного вредного воздействия на окружающую среду, то оно может быть, предотвращено техническими способами и разумным потреблением энергии океана.

Рекреационные ресурсы . Под рекреацией понимается система, обеспечивающая потребность рекреантов (отдыхающих) в использовании их свободного времени для оздоровительной, спортивной и культурно-развлекательной деятельности. Она развивается на специализированных территориях, находящихся вне населенного пункта, являющегося местом их постоянного жительства. Длительный отдых (рекреация с ночлегом вне места постоянного проживания) по своему содержанию совпадает с понятием туризм. Большинство туристов преследует цели рекреации.

Океан и его берега с глубокой древности привлекали человека как место отдыха и восстановления здоровья. В настоящее время все большее развитие получает талассотерапия – лечение морем с использованием тонизирующих и тренирующих методов оздоровления. Морские берега обладают богатыми климатобальнеологическими возможностями, обусловленными специфическим воздействием морской воды и климата побережий на организм человека. Морские соли, насыщающие воздух, легко всасываются поверхностью легких, благоприятно воздействуя на обменные процессы в организме. Примеси солей брома, ритмичный шум прибоя и вид спокойного моря способствуют снятию возбуждения центральной нервной системы. Морская вода оздоровляюще действует на все функции организма человека, повышает его реактивность. Ионы магния морской воды активизируют жизненные процессы, связанные с образование костной ткани, делением клетки, обменом веществ. Накопление магния в организме человека стимулирует выведение из него радиоактивных элементов. Применение морской воды во многих случаях дает большой лечебный эффект, оказывает положительное воздействие на дыхательную систему, кровообращение, органы внутренней секреции, нервную систему и т. д. Важным фактором приморских курортов являются морские купания, оказывающие заметное влияние на нервную систему и внутренние органы. Часто привлекательность морских побережий усиливается наличием лечебных грязей и минеральных вод.

География рекреационного использования морских и океанических побережий зависит от аттрактивности (привлекательности) тех или иных участков берега, она связана с доступностью и удобством расположения, особенностями климата, развитием сферы обслуживания, социально-историческим фактором, возможностями развития морских видов спорта, спортивного рыболовства и т. д.

В Европе наиболее привлекательными местами для отдыхающих и туристов являются берега Средиземного, Черного, Северного и Балтийского морей. В северной Америке выделяется своей притягательностью побережье Флориды и Калифорнии. Крупные курорты на берегу Тихого океана имеет Мексика. Знамениты курорты Антильских и Бермудских островов, Бразилии, Перу, Колумбии, Венесуэлы и т. д. В Африке большими рекреационными ресурсами обладают северные побережья Марокко, Алжира, Туниса, Ливии и Египта. Благоприятные условия для развития прибрежного отдыха имеются в Индии, Японии, Вьетнаме, Австралии и других регионах.

Океан имеет также важное транспортное значение. На морской транспорт приходится около 80 % всего мирового грузооборота и свыше 95 % перевозок, связанных с мировой торговлей. Понятие “морской транспорт” развивается с освоением океана и быстрым научно-техническим прогрессом. В Мировом океане все большее развитие получают трубопроводный транспорт, авиация, линии электропередачи. Они приобретают специфичные черты, определяемые условиями океана. В результате строительства тоннелей, мостов через морские преграды в океан внедряются такие чисто сухопутные виды транспорта, как автомобильный и железнодорожный.


§ 14. Природные ресурсы Мирового океана.

Вспомните

  1. Какие океаны на Земле?
  2. Какая часть поверхности Земли покрыта Мировым океаном?
  3. Как человек использует Мировой океан?

Мировой океан протяжении всей истории человечества сыграл ‘важную роль в жизни человека. Природные ресурсы Мирового океана делят на четырегруппы:

  1. ресурсы, содержащиеся в морской воде;
  2. биологические,
  3. минеральные,
  4. ЕСУРСЫ тепловой и механической энергии.

Ресурсы Мирового океана

В каждом кубическом километре морской воды содержится около 35 млн т твердых веществ, в том числе около 20 млн тонн поваренной соли, 10 млнтон магния, 31 тыс.т брома, 3 т урана, 0,3 т серебра, 0,04 т золота.Всего в морской воде растворено более 70 химических элементов, т.е. 2 / 3 известных в мире. Больше всего в воде натрия, магния, хлора и кальция. Однако только 16 элементов имеют относительно высокую концентрацию йипрактическое значение. Морская вода — единственный источник добывания брома; в воде его в 8 раз больше, чем в земной коре.

Морскую воду, применяя технологии опреснения, можно использовать для пополнения запасов пресной.

В океане достаточно широко представлены биологические ресурсы: 180 тыс.видов животных и 20 тыс. видов растений. Значительная биомасса морских организмов — 36 млрд тонн. Ее количество в десятки раз возрастает от экватора кполюсов. Это объясняется тем, что холодноводные организмы большие в размерах и быстрее воспроизводятся.

В теплых водах Мексиканского залива

Хозяйственное значение имеют четыре группы биологических ресурсов: рыбы,морские беспозвоночные (крабы, устрицы, гребешки, мидии, кальмары,осьминоги, каракатицы), морские млекопитающие (киты, моржи) и морскиеводоросли. Самая часть океана — шельф. Размер биологических ресурсов связана с чистотой воды.

Более 85% биомассы океана, используется человеком, приходится нарыбу. Крупнейшие уловы в Тихом океане и Норвежском, Беринговом,Охотском и Японском морях. Ученые считают, что практически все морские водоросли можно употреблять в пищу. Больше всего их заготавливают Китай, Япония, КНДР. Но на сегодня Мировой океан дает человечеству лишь 2% продуктовпитания.

Рыбаки за работой. Эквадор

Поскольку использование биологических ресурсов моря во многих странахпревышает их естественное воспроизводство, то во многих странах распространенным видом деятельности является искусственное разведение рыб, моллюсков (устриц, мидий),ракообразных и водорослей, что называется марикультуры. Она распространена в Японии, Китае, Индии, Индонезии, Южной Кореи, США, Нидерландах иФранции.

Минеральные ресурсы Мирового океана делятся на три группы.Прежде всего, это ресурсы морских недр (природный газ, нефть, уголь,железная руда, олово). Половина мировых запасов нефти приходится наморские месторождения, которые являются продолжением материковых. Наиболее известныешельфовые месторождения Северного моря, Персидского и Мексиканского заливов.Перспективным является шельф Баренцева моря и Сахалина. Уже сегодня 1 / 3нефти получают из морских месторождений. На шельфе также добывают уголь(Великобритания, Канада, Япония, Китай), серу (США). Кроме того, водействием волн и течений разрушается прибрежная часть морского дна, которая являетсяисточником прибрежных россыпей (россыпных месторождений), содержащих алмазы,олово, золото, платину, янтарь. Минеральные ресурсы можнодобывать на морском дне — строительные материалы, фосфориты,железо-марганцевые конкреции. Железо-марганцевые конкреции имеют размеры5-10 см в диаметре, их форма преимущественно округлая или сплюснутая.Залегают они на глубинах 100-7000 м. Распространены они в Тихом,Индийском, Атлантическом океанах. Всего рудные поля занимают 10% площади дна океанов. Технологии их добычи уже разработаны, однако еще неимеют широкого использования. В районах срединно-океанических хребтов вместах выхода горячих источников сконцентрированы значительные запасы руд цинка,свинца, меди и других металлов.

Месторождения россыпных алмазов давно известны на юго-западномпобережье Африки. Здесь. На расстоянии 1600 км в песчано-гравийный отложенияхшельфа и береговых террас образовались богатые месторождения высококачественныхалмазов, запасы которых составляют около 40 млн каратов. Золотоносныепески являются на песчаных пляжах Золотого берега Аляски, у берегов Канады,Панамы, Чили, Бразилии, Турции, Египта, Индии и Австралии. Платиновые пески известны на побережье Аляски, Индии, Австралии, Бразилии.Высококачественные конкреции содержащие до 30 различных элементов, среди которыхмарганец (25-30%), железо (15%), никель (12%), медь (1,2%), кобальт (0,3%). Янтарь (солнечный камень) выносится волнами Балтийского иСеверного морей на побережье Финляндии, Швеции, Дании, Норвегии,Нидерландов и восточной части Британских островов.

Значительны ресурсы механической энергии: гидроэнергетический потенциалприливов больше потенциала всех рек Земли, а энергия волн в 90 раз больше энергии приливов. Термическая энергия возникает в результате разницы температур поверхностных и глубинных вод. Эта разница должна быть не менее20? С. Максимальные значения ее в тропических широтах. Однако, при современномуровня развития науки и технологии пока экономически невыгодноприменять механическую и тепловую энергию Мирового океана, заисключением энергии приливов и отливов. Приливные электростанцийпостроены во Франции, США, Китае и России.

Во время отлива в Северном море

Использование всех видов ресурсов Мирового океана сопровождаетсяего загрязнением. Особую угрозу несет загрязнения нефтью инефтепродуктами в результате сброса отходов с судов, аварий танкеров, потерь при погрузке и разгрузке. Ежегодно их попадает в океан 5-10 млнт. Нефтяная пленка, образующиеся на поверхности океанической воды, тормозитпроцесс биосинтеза, нарушает биологические и энергетические связи. Кроме того, загрязнение Мирового океана связано с захоронением токсичных ирадиоактивных отходов, проведением испытаний различных видов оружия.Также значительные объемы загрязнения поступают с речными водами. Ежегодноэтим путем в океан попадает более 320 млн т солей железа, 6,5 млн тфосфора. Почти треть минеральных удобрений (30% калия, 20% азота, 2,5% фосфора) вымываются дождевыми водами и выносятся реками в моря иокеаны. Морская вода, насыщенная нитратами, — благоприятная среда дляодноклеточных водорослей, которые, образуя огромные пласты (до 2 мтолщиной), затрудняют доступ кислорода в глубинные горизонты. Это обусловливаетзамор рыбы и других организмов. Значительное количество загрязнения воды океана связана с промышленными и бытовыми отходами. Проблема охраныокеанических вод касается всех стран, даже тех, которые не имеютнепосредственного выхода к морю. Охрана и рациональное использованиеморской среды является объектом международного сотрудничества.

Ресурсы мирового океана.

В наше время, «эпоху глобальных проблем», Мировой океан играет всё большую роль в жизни человечества. Являясь огромной кладовой минеральных, энергетических, растительных и животных богатств, которые — при рациональном их потреблении и искусственном воспроизводстве — могут считаться практически неисчерпаемыми, Океан способен решить одни из самых остро стоящих задач: необходимость обеспечения быстро растущего населения продуктами питания и сырьём для развивающейся промышленности, опасность энергетического кризиса, недостаток пресной воды.

Основной ресурс Мирового океана – морская вода.

Она содержит 75 химических элементов, среди которых такие важные как уран, калий, бром, магний. И хотя основной продукт морской воды всё ещё поваренная соль — 33 % от мировой добычи, но уже добываются магний и бром, давно запатентованы методы получения целого ряда металлов, среди них и необходимые промышленности медь и серебро, запасы которых неуклонно истощаются, когда как в океанских водах их содержится до полмиллиарда тонн. В связи с развитием ядерной энергетики существуют неплохие перспективы для добычи урана и дейтерия из вод Мирового океана, тем более что запасы урановых руд на земле уменьшаются, а в Океане его 10 миллиардов тонн, дейтерий вообще практически неисчерпаем — на каждые 5000 атомов обычного водорода приходится один атом тяжелого.

Но опреснение не единственная возможность получения пригодной для питья воды. Существуют донные источники, которые всё чаще обнаруживаются на континентальном шельфе, то есть в областях материковой отмели, прилегающей к берегам суши и имеющее одинаковое с ней геологическое строение. Один из таких источников, расположенный у берегов Франции — в Нормандии, дает такое количество воды, что его называют подземной рекой.

Минеральные ресурсы Мирового океана представлены не только морской водой, но и тем, что «под водой».

Недра океана, его дно богаты залежами полезных ископаемых. На континентальном шельфе находятся прибрежные россыпные месторождения – золото, платина; встречаются и драгоценные камни – рубины, алмазы, сапфиры, изумруды. Например, вблизи Намибии идут подводные разработки алмазного гравия уже с 1962 года. На шельфе и частично материковом склоне Океана расположены большие месторождения фосфоритов, которые можно использовать в качестве удобрений, причём запасов хватит на ближайшие несколько сот лет.

Места их расположения общеизвестны, но результаты промышленной разработки пока ещё очень скромны. Зато полным ходом идёт разведка и добыча океанской нефти и газа на прибрежном шельфе, доля морской добычи приближается к 1/3 мировой добычи этих энергоносителей. В особо крупных размерах идёт разработка месторождений в Персидском, Венесуэльском, Мексиканском заливе, в Северном море; нефтяные платформы протянулись у берегов Калифорнии, Индонезии, в Средиземном и Каспийском морях. Мексиканский залив к тому же знаменит открытым во время разведки нефти месторождением серы, которая вытапливается со дна с помощью перегретой воды.

Другой, пока ещё нетронутой кладовой океана являются глубинные расщелины, где образуется новое дно. Так, например, горячие (более 60 градусов) и тяжелые рассолы Красноморской впадины содержат огромные запасы серебра, олова, меди, железа и других металлов. Всё более и более важное значение принимает добыча материалов на мелководье.

Вокруг Японии, к примеру, отсасывают по трубам подводные железосодержащие пески, страна добывает из морских шахт около 20 % угля — над залежами породы сооружают искусственный остров и бурят ствол, вскрывающий угольные пласты.

Многие природные процессы, происходящие в Мировом океане, — движение, температурный режим вод — являются неистощимыми энергетическими ресурсами.

Например, суммарная мощность приливной энергии Океана оценивается от 1 до 6 миллиардов кВт ч. Это свойство приливов и отливов использовалось во Франции в средние века: в XII веке строились мельницы, колёса которых приводились в движение приливной волной. В наши дни во Франции существуют современные электростанции, использующие тот же принцип работы: вращение турбин при приливе происходит в одну сторону, а при отливе — в другую.

Главное богатство Мирового океана — это его биологические ресурсы (рыба, зоол.- и фитопланктон и другие).

Биомасса Океана насчитывает 150 тыс. видов животных и 10 тыс. водорослей, а её общий объём оценивается в 35 миллиардов тонн, чего вполне может хватить, чтобы прокормить 30 миллиардов! человек. Вылавливая ежегодно 85-90 миллионов тонн рыбы, на неё приходится 85 % от используемой морской продукции, моллюсков, водорослей, человечество обеспечивает около 20% своих потребностей в белках животного происхождения.

Живой мир Океана — это огромные пищевые ресурсы, которые могут быть неистощимыми при правильном и бережном их использовании. Максимальный вылов рыбы не должен превышать 150-180 миллионов тонн в год: превзойти этот предел очень опасно, так как произойдут невосполнимые потери. Многие сорта рыб, китов, ластоногих вследствие неумеренной охоты почти исчезли из океанских вод, и неизвестно, восстановится ли когда-нибудь их поголовье. Но население Земли растёт бурными темпами, всё больше нуждаясь в морской продукции.

Существует несколько путей поднятия её продуктивности. Первый — изымать из океана не только рыбу, но и зоопланктон, часть которого — антарктический криль — уже пошла в пищу. Можно без всякого ущерба для Океана вылавливать его в гораздо больших количествах, чем вся добываемая в настоящее время рыба. Второй путь — использование биологических ресурсов открытого Океана. Биологическая продуктивность Океана особенно велика в области подъёма глубинных вод.

Один из таких апвеллингов, расположенный у побережья Перу, даёт 15 % мировой добычи рыбы, хотя площадь его составляет не более двух сотых процента от всей поверхности Мирового океана. Наконец, третий путь — культурное разведение живых организмов, в основном в прибрежных зонах. Все эти три способа успешно опробованы во многих странах мира, но локально, поэтому продолжается губительный по своим объёмам вылов рыбы. В конце ХХ века наиболее продуктивными акваториями считаются Норвежское, Берингово, Охотское, Японское моря.

Океан, будучи кладовой разнообразнейших ресурсов, также является бесплатной и удобной дорогой, которая связывает удаленные друг от друга континенты и острова.

Морской транспорт обеспечивает почти 80% перевозок между странами, служа развивающемуся мировому производству и обмену.

Мировой океан может служить переработчиком отходов. Благодаря химическому и физическому воздействию своих вод и биологическому влиянию живых организмов, он рассеивает и очищает основную часть поступающих в него отходов, сохраняя относительное равновесие экосистем Земли.

В течение 3000 лет в результате круговорота воды в природе вся вода Мирового океана обновляется.

ПОСМОТРЕТЬ ЕЩЕ:

География 10-го класса

краткое резюме других презентаций

«Страна Молдова» — Крупнейшие города: Кишинэу, Тирасполь, Бэлць, Бендер. EEA. Общая информация. Презентация «Особенности Молдовы». Естественный и вирусный потенциал. Население. Общие характеристики экономики. Молдова является аграрно-промышленным государством. Внешнеэкономические связи. Всего 4 458 000 человек. Развиваются механическая структура, химическая промышленность, металлургия, дегенерация, легкая промышленность.

Познакомьтесь с потребностями государства.

«Ресурсы Мирового океана» — Методы решения проблем. Биологические ресурсы. Производственные области. Примеры минералов. Море. Ресурсы Мирового океана. Минеральные ресурсы. Источник химических элементов. Проблемы мирового океана. Казначейство богатства. Многочисленные крупные нефтяные месторождения. Энергетические ресурсы. Ежегодно в Мировом океане производится около 700 миллионов тонн нефти.

Морской биолог. Десять миллионов тонн рыбы.

Тема «Южная Африка в Африке»: Южная Африка. Добыча и производство.

Остальные этнические группы относительно невелики. Парадоксы Африки. Кейптаун — около 2 миллионов человек. Доля сельского хозяйства и горнодобывающей промышленности снизилась с 30% (1960 г.) до 14% (1996 г.). Историческое прошлое. Обрабатывающая промышленность. Национальные парки и заповедники были созданы для защиты фауны в Южной Африке. В стране представлено как орошаемое, так и в основном неорошаемое сельское хозяйство.

«Общие характеристики зарубежной Европы» — выберите страну с правительством Монархии. Алюминиевая промышленность. Франции, Нидерландов, Швейцарии. Лесная промышленность.

Плотность населения. Металлургия. Ресурсы. Религиозный состав. Природные ресурсы. 1 тип воспроизведения. Как страны различаются по национальному составу. Общие характеристики. Экономика стран Европы. Население. Промышленность — основная отрасль.

План урока. Сельское хозяйство.

«Экономическая география Франции» — Население. Средиземноморская. Обрабатывающая промышленность. О стране. Машиностроение и металлообработка. Экономическая география Франции. География сельского хозяйства. Безопасность Франции. Западный регион. Химическая промышленность.

Легкая промышленность. Экономика. Отраслевая география. Equity. Восточный округ. Добывающая промышленность. Франция. Экономические регионы. Внешняя торговля.

«Экология Уссурийск» — Ярославский ГОК, расположенный в 50 км от города Уссурийск. Экологическая ситуация в городе Уссурийске. Удаление окалины — это поверхностный сток из урбанизированной территории. Источники загрязнения города Уссурийска. Экологические проблемы города Уссурийска. Исследование водопровода. Цели проекта.

В Дальнегорске есть металлы расплава. Химический эксперимент. Цель работы. Изучение воды для присутствия органических остатков и сточных вод.

Вместе в теме «География 10 класс» 121 презентация

5klass.net> География 10-го класса> 10-й класс «Ресурсы Мирового океана»> Слайд 10

If you like this presentation – show it…

Ресурсы Мирового океана- кладовая богатств

Ресурсы Мирового океана Основной ресурс Мирового океана — морская вода. Она содержит 75 химических элементов, среди которых:уран, калий, бром, магний. И хотя основной продукт морской воды всё ещё поваренная соль — 33 % от мировой добычи, но уже давно запатентованы методы получения меди и серебра, запасы которых неуклонно истощаются, когда как в океанских водах их содержится до полмиллиарда тонн.

Добыча соли из морской воды

Уран Калий Медь

Влияние Мирового океана на планету Нашу планету вполне можно было бы назвать Океанией, так как площадь, занимаемая водой, в 2,5 раза превышает территорию суши. Огромная масса вод океана формирует климат планеты, служит источником атмосферных осадков. Из него поступает более половины кислорода.

На дне Мирового океана находится множество минеральных и органических веществ. Эти геологические и геохимические процессы оказывают очень сильное влияние на всю земную кору. Именно Океан стал колыбелью жизни на Земле; сейчас в нём обитает около четырёх пятых всех живых существ планеты.

Получение магния из морской воды В морской воде содержится примерно 0,13% Впервые магний был получен из морской воды в Англии (Armstrong, Miall, 1946), однако первое крупное предприятие по извлечению магния из морской воды было сооружено близ Фрипорта в начале 1941 г.

"Этил дау кемикл». В результате реакции известкового молока с соединениями магния образуется жидкий илоподобный осадок нерастворимой гидроокиси магния, который затем перекачивается в отстойники.

Осадок составляет примерно 2% общего объема морской воды. Выбор участка для постройки магниевого завода определяется не столь жесткими требованиями, нежели завода, получающего бром из морской воды. Одно из достоинств, присущих рассматриваемому процессу, состоит в том, что низкая стоимость сырья может быть еще более уменьшена, если эти материалы подавать непосредственно в технологическую линию путем их перекачки.

Общий вид магнийперерабатывающей установки на заводе ‘Этил дау кемикл компани’, Фрипорт (Тexac)

Получение брома из морской воды Из морской воды бром был впервые выделен в 1926 г.

в Калифорнии при обработке воды, получаемой в процессе извлечения соли. В ходе широких поисков дополнительных источников брома "Этил корпорейшн" разработала процесс прямого осаждения брома непосредственно из морской воды. Выбор места для постройки завода по извлечению брома следует производить с особой тщательностью. При этом необходимо заранее исключить возможности разбавления потребляемых заводом морских вод дождевыми осадками.

Здесь "Этил дау кемикл компани" построила завод производительностью 3 тыс. т брома в год. В 1938 г. мощность этого предприятия была увеличена до 20 тыс. т брома в год (Shigley, 1951). В 1937 г. этот процесс был несколько модифицирован.

РЕСУРСЫ МИРОВОГО ОКЕАНА В связи с развитием ядерной энергетики существуют неплохие перспективы для добычи урана и дейтерия из вод Мирового океана, тем более что запасы урановых руд на земле уменьшаются, а в Океане его 10 миллиардов тонн, дейтерий вообще практически неисчерпаем — на каждые 5000 атомов обычного водорода приходится один атом тяжелого.

Помимо выделения химических элементов морская вода может быть использована для получения необходимой человеку пресной воды. Сейчас имеется в наличии много промышленных методов опреснения: применяются химические реакции, при которых примеси удаляются из воды; солёную воду пропускают через специальные фильтры; наконец, производится обычное кипячение.

Но опреснение не единственная возможность получения пригодной для питья воды. Существуют донные источники, которые всё чаще обнаруживаются на континентальном шельфе, то есть в областях материковой отмели, прилегающей к берегам суши и имеющее одинаковое с ней геологическое строение.

Один из таких источников, расположенный у берегов Франции — в Нормандии, дает такое количество воды, что его называют подземной рекой.

Химическое опреснение При химическом способе опреснения в морскую воду вводят специальные осаждающие реагенты, которые при взаимодействии с растворёнными в ней ионами солей (хлориды, сульфаты), образуют нерастворимые, выпадающие в осадок соединения.

Вследствие того, что морская вода содержит большое количество растворенных веществ, расход реагентов весьма значителен и составляет примерно 3-5% количества опресненной воды. К веществам, способным образовывать нерастворимые соединения с ионами натрия (Na+) и хлора (Cl-), относятся соли серебра (Ag+) и бария (Ba2+), которые при обработке солёной воды образуют выпадающие в осадок хлористое серебро (AgCl) и сернокислый барий (BaSO4).

Эти реагенты дорогостоящие, реакция осаждения с солями бария протекает медленно, соли бария токсичны. Поэтому химическое осаждение при опреснении воды используется очень редко.

Дистилляция Дисцилляция воды (перегонка) основана на различии в составе воды и образующегося из нее пара. Процесс осуществляется в специальных дистилляционных установках – опреснителях путем частичного испарения воды и последующей конденсации пара.

В процессе дистилляции более летучий компонент (низкокипящий) переходит в паровую фазу в большем количестве, чем менее летучий (высококипящий).

Поэтому при конденсации образовавшихся паров в дистиллят переходят низкокипящие, а в кубовый остаток - высококипящие компоненты. Если из исходной смеси отгоняется не одна фракция, а несколько, дистилляция называется фракционной (дробной). В зависимости от условий процесса различают простую и молекулярную дистилляцию.

Замораживание Данный метод основан на том, что в естественных природных условиях лед, образующийся из морской воды, является пресным, поскольку образование кристаллов льда при температуре ниже температуры замерзания происходит только из молекул воды (явление криоскопии).

При искусственном медленном замораживании соленой морской воды вокруг центров кристаллизации образуется пресный лед гексагональной игольчатой структуры со средней плотностью 930 кг/м3. Данный метод применяется для концентрирования непищевых продуктов, для опреснения морской воды, концентрирования и разделения химических растворов и др.

Он достаточно прост и экономичен, но требует сложного оборудования и энергоёмок. Поэтому на практике он используется чрезвычайно редко.

Недра океана, его дно богаты залежами полезных ископаемых. На континентальном шельфе находятся прибрежные россыпные месторождения — золото, платина; встречаются и драгоценные камни — рубины, алмазы, сапфиры, изумруды.

Например, вблизи Намибии идут подводные разработки алмазного гравия уже с 1962 года. Зато полным ходом идёт разведка и добыча океанской нефти и газа на прибрежном шельфе, доля морской добычи приближается к 1/3 мировой добычи этих энергоносителей.

Мексиканский залив к тому же знаменит открытым во время разведки нефти месторождением серы, которая вытапливается со дна с помощью перегретой воды.

Золото Платина Рубин Сапфир Изумруд Алмаз

Добыча нефти НефтеДобыча

Кристаллы серы Станция для добычи серы

На шельфе и частично материковом склоне Океана расположены большие месторождения фосфоритов, которые можно использовать в качестве удобрений, причём запасов хватит на ближайшие несколько сот лет.

Самый же интересный вид минерального сырья Мирового океана — это знаменитые железомарганцевые конкреции, которыми покрыты громадные по площади подводные равнины. Конкреции представляют собой своеобразный «коктейль» из металлов: туда входят медь, кобальт, никель, титан, ванадий, но, конечно же, больше всего железа и марганца.

Места их расположения общеизвестны, но результаты промышленной разработки пока ещё очень скромны.

Спасибо за внимание!

Аналогичные главы из других работ:

Биосфера планеты

3.4.

Нефть и нефтепродукты являются наиболее распространенными загрязнителями в Мировом океане.

К началу 80-х годов океан ежегодно поставлял около 6 миллионов тонн. Нефть, на долю которой приходится 0,23% мирового производства …

Загрязнение глобального океана

первый

Ресурсы Мирового океана

В наше время «мир глобальных проблем», мировой океан играет все более важную роль в жизни человечества.

Загрязнение глобального океана

II. Загрязнение глобального океана

Мировой океан

ИСТОЧНИКИ МИРОВОГО ОКЕАНА

В наше время «мир глобальных проблем», мировой океан играет все более важную роль в жизни человечества.

Будучи огромным складом для минеральных, энергетических, растительных и животных ресурсов …

Мировой океан

МИРОВЫЕ ОКЕАНСКИЕ ПРОБЛЕМЫ

Мировой океан

ИССЛЕДОВАНИЕ МИРОВОГО ОКЕАНА

Исследования или, вернее, их недостаток — одна из проблем в мировом океане.

Знания могут помочь человечеству решить различные задачи, связанные с использованием и охраной морских вод. С тех пор человек начал изучать океан …

Мировой океан

2. ПРОБЛЕМЫ МИРОВОГО ОКЕАНА

Человек — дитя природы, вся жизнь соответствует его законам и правилам, но мы не можем обратить внимание на растущее негативное влияние экономической деятельности на окружающую среду …

1.1. Структура мирового океана

Предыдущие виды дневного света Мирового океана как единой плоской области были результатом неадекватности фактических данных в подводной части нашей планеты.

В результате многолетнего изучения Мирового океана информация …

Глобальный океан как единая система

1.2 Части мирового океана

Мировой океан — один, хотя он сильно разделен. Его площадь составляет 361 млн. Км …

Глобальный океан как единая система

Глава 2. Ресурсы Мирового океана

В наше время «мир глобальных проблем» глобальный океан играет все более важную роль в жизни человечества.

Будучи огромным складом для минеральных, энергетических, растительных и животных ресурсов …

Компания как неотъемлемая часть глобальной экосистемы

4. Загрязнение глобального океана

Нефть и нефтепродукты являются наиболее распространенными загрязнителями в Мировом океане. К началу 80-х годов океан ежегодно поставлял около 6 миллионов тонн.

Нефть, на долю которой приходится 0,23% мирового производства …

2. Защита воды в мировом океане

Экологические проблемы мирового океана

первый

Важность мирового океана

Важность мирового океана для человека и всех живых существ настолько велика, что его трудно оценить. В течение долгого времени мировые океаны были одним из основных источников пищи и условий жизни на Земле …

Экологические проблемы мирового океана

3. Защита мирового океана

Мировой океан подлежит международной защите. Многие многосторонние и региональные соглашения были приняты для защиты Мирового океана.

Конвенция Организации Объединенных Наций по морскому праву, 1982 год Конвенция Организации Объединенных Наций по морскому праву, 1982 год / RF RF. 12.1.1997 …

Энергетические ресурсы Мирового океана

1. Энергетические ресурсы Мирового океана

В Мировом океане существуют огромные, поистине неисчерпаемые источники механической и тепловой энергии, которые также постоянно обновляются.

Особенно привлекает внимание приливной энергии (точнее, приливного движения воды). Известный …

В наше время, "эпоху глобальных проблем", Мировой океан играет всё большую роль в жизни человечества. Являясь огромной кладовой минеральных, энергетических, растительных и животных богатств, которые - при рациональном их потреблении и искусственном воспроизводстве - могут считаться практически неисчерпаемыми, Океан способен решить одни из самых остро стоящих задач: необходимость обеспечения быстро растущего населения продуктами питания и сырьём для развивающейся промышленности, опасность энергетического кризиса, недостаток пресной воды.

Основной ресурс Мирового океана - морская вода. Она содержит 75 химических элементов, среди которых такие важные, как уран, калий, бром, магний. И хотя основной продукт морской воды всё ещё поваренная соль - 33% от мировой добычи, но уже добываются магний и бром, давно запатентованы методы получения целого ряда металлов, среди них и необходимые промышленности медь и серебро, запасы которых неуклонно истощаются, когда как в океанских водах их содержится до полмиллиарда тонн. В связи с развитием ядерной энергетики существуют неплохие перспективы для добычи урана и дейтерия из вод Мирового океана, тем более что запасы урановых руд на земле уменьшаются, а в Океане его 10 миллиардов тонн, дейтерий вообще практически неисчерпаем - на каждые 5000 атомов обычного водорода приходится один атом тяжелого. Помимо выделения химических элементов морская вода может быть использована для получения необходимой человеку пресной воды. Сейчас имеется в наличии много промышленных методов опреснения: применяются химические реакции, при которых примеси удаляются из воды; солёную воду пропускают через специальные фильтры; наконец, производится обычное кипячение. Но опреснение не единственная возможность получения пригодной для питья воды. Существуют донные источники, которые всё чаще обнаруживаются на континентальном шельфе, то есть в областях материковой отмели, прилегающей к берегам суши и имеющее одинаковое с ней геологическое строение. Один из таких источников, расположенный у берегов Франции - в Нормандии, дает такое количество воды, что его называют подземной рекой.

Минеральные ресурсы Мирового океана представлены не только морской водой, но и тем, что "под водой". Недра океана, его дно богаты залежами полезных ископаемых. На континентальном шельфе находятся прибрежные россыпные месторождения - золото, платина; встречаются и драгоценные камни - рубины, алмазы, сапфиры, изумруды. Например, вблизи Намибии идут подводные разработки алмазного гравия уже с 1962 года. На шельфе и частично материковом склоне Океана расположены большие месторождения фосфоритов, которые можно использовать в качестве удобрений, причём запасов хватит на ближайшие несколько сот лет. Самый же интересный вид минерального сырья Мирового океана - это знаменитые железомарганцевые конкреции, которыми покрыты громадные по площади подводные равнины. Конкреции представляют собой своеобразный "коктейль" из металлов: туда входят медь, кобальт, никель, титан, ванадий, но, конечно же, больше всего железа и марганца. Места их расположения общеизвестны, но результаты промышленной разработки пока ещё очень скромны. Зато полным ходом идёт разведка и добыча океанской нефти и газа на прибрежном шельфе, доля морской добычи приближается к 1/3 мировой добычи этих энергоносителей. В особо крупных размерах идёт разработка месторождений в Персидском, Венесуэльском, Мексиканском заливе, в Северном море; нефтяные платформы протянулись у берегов Калифорнии, Индонезии, в Средиземном и Каспийском морях. Мексиканский залив к тому же знаменит открытым во время разведки нефти месторождением серы, которая вытапливается со дна с помощью перегретой воды. Другой, пока ещё нетронутой кладовой океана являются глубинные расщелины, где образуется новое дно. Так, например, горячие (более 60 градусов) и тяжелые рассолы Красноморской впадины содержат огромные запасы серебра, олова, меди, железа и других металлов. Всё более и более важное значение принимает добыча материалов на мелководье. Вокруг Японии, к примеру, отсасывают по трубам подводные железосодержащие пески, страна добывает из морских шахт около 20% угля - над залежами породы сооружают искусственный остров и бурят ствол, вскрывающий угольные пласты.

Многие природные процессы, происходящие в Мировом океане, - движение, температурный режим вод - являются неистощимыми энергетическими ресурсами. Например, суммарная мощность приливной энергии Океана оценивается от 1 до 6 миллиардов кВтч. Это свойство приливов и отливов использовалось во Франции аж в средние века: в XII веке строились мельницы, колёса которых приводились в движение приливной волной. В наши дни во Франции существуют современные электростанции, использующие тот же принцип работы: вращение турбин при приливе происходит в одну сторону, а при отливе - в другую.

Главное богатство Мирового океана - это его биологические ресурсы (рыба, зоо - и фитопланктон и другие). Биомасса Океана насчитывает 150 тыс. видов животных и 10 тыс. водорослей, а её общий объём оценивается в 35 миллиардов тонн, чего вполне может хватить, чтобы прокормить 30 миллиардов! человек. Вылавливая ежегодно 85-90 миллионов тонн рыбы, на неё приходится 85% от используемой морской продукции, моллюсков, водорослей, человечество обеспечивает около 20% своих потребностей в белках животного происхождения. Живой мир Океана - это огромные пищевые ресурсы, которые могут быть неистощимыми при правильном и бережном их использовании. Максимальный вылов рыбы не должен превышать 150-180 миллионов тонн в год: превзойти этот предел очень опасно, так как произойдут невосполнимые потери. Многие сорта рыб, китов, ластоногих вследствие неумеренной охоты почти исчезли из океанских вод, и неизвестно, восстановится ли когда-нибудь их поголовье. Но население Земли растёт бурными темпами, всё больше нуждаясь в морской продукции. Существует несколько путей поднятия её продуктивности. Первый - изымать из океана не только рыбу, но и зоопланктон, часть которого - антарктический криль - уже пошла в пищу. Можно без всякого ущерба для Океана вылавливать его в гораздо больших количествах, чем вся добываемая в настоящее время рыба. Второй путь - использование биологических ресурсов открытого Океана. Биологическая продуктивность Океана особенно велика в области подъёма глубинных вод. Один из таких апвеллингов Апвеллинг - подъём вод из глубины водоёма к поверхности. Вызывается устойчиво дующими ветрами, которые сгоняют поверхностные воды в сторону открытого моря, а в замен на поверхность поднимаются воды нижележащих слоёв., расположенный у побережья Перу, даёт 15% мировой добычи рыбы, хотя площадь его составляет не более двух сотых процента от всей поверхности Мирового океана. Наконец, третий путь - культурное разведение живых организмов, в основном в прибрежных зонах. Все эти три способа успешно опробованы во многих странах мира, но локально, поэтому продолжается губительный по своим объёмам вылов рыбы. В конце ХХ века наиболее продуктивными акваториями считаются Норвежское, Берингово, Охотское, Японское моря.

В последние годы в мире все более широкое распространение находит разведение некоторых видов организмов на искусственно созданных морских плантациях. Эти промыслы называются марикультурой. Развитие марикультуры имеет место в Японии (устрицы-жемчужницы), Китае (устрицы-жемчужницы), США (устрицы и мидии), Франции (устрицы), Австралии (устрицы), Нидерландах (устрицы, мидии), средиземноморских странах Европы (мидии). В России, в морях Дальнего Востока, выращивают морскую капусту (ламинарию), морских гребешков.

Океан, будучи кладовой разнообразнейших ресурсов, также является бесплатной и удобной дорогой, которая связывает удаленные друг от друга континенты и острова. Морской транспорт обеспечивает почти 80% перевозок между странами, служа развивающемуся мировому производству и обмену.

Решить проблему энергетического кризиса на морских и океанических побережьях помогают электростанции, работающие на энергии приливов и отливов. Также с помощью прибоев работают мельницы. Существуют проекты, благодаря которым не потребуется устройство плотин, этих страшных тромбов на реках, для накопления воды - в том числе питьевой и перестанет угрожать необходимость устройства обводных каналов - ледники Северного океана могут напоить пустыни.

На основании обобщения материала можно сделать вывод, что Мировой океан - будущее человечества. В его водах обитают многочисленные организмы, многие из которых являются ценным биоресурсом планеты, а в толще земной коры, покрытой Океаном - большая часть всех минеральных ресурсов Земли. Несмотря на огромные перспективы использования недр мирового океана, а также его энергии приливов, волн и др., человечество на данном этапе своего технического развития сосредоточилось в основном на добыче нефти и газа в легкодоступных приконтинентальных районах и активном (вплоть до угрозы истребления) вылове биомассы морей и океанов Земли.

Биологические природные ресурсы Океана весьма разнообразны и значительны. Они имеют наибольшую ценность, особенно рыбные. Ценность рыбы как продукта питания определяется наличием белка. На долю рыб приходится до 90% всех органических ресурсов Океана. На первом месте в мировом рыбном промысле стоят семейства сельдевых – почти треть всего улова и тресковых, много добывают анчоусовых, скумбриевых, ставридовых и камбаловых. Богатство Океана – лососевые и особенно осетровые. Основной улов рыбы приходится на шельфовую зону, но с 50–60-х гг. возрос лов рыбы в открытых океанах крупными судами – траулерами. Рыба используется прежде всего как пищевой продукт в свежем, мороженом, сушеном, соленом и консервированном виде. Кроме того, она идет на кормовую муку для откорма скота и птицы (анчоус и др.), технический жир, удобрения. Основные экспортеры рыбы – Перу, Норвегия, Исландия, США. География морского рыбного промысла такова: он широко ведется в Атлантическом и Тихом океанах, скромнее – в Северном Ледовитом (в основном промышляют сельдевые и донные виды рыб в Норвежском и Баренцевом морях), а Индийский океан нередко называют «морской целиной». Районы высокой биологической продуктивности всюду совпадают с зонами гидрологических фронтов (у побережий Ньюфаундленда, Сахалина, Японии и др.), а также с районами апвеллинга (побережье Перу, Северного Чили, Калифорнии и др.). К океанским «пустыням» относятся Саргассово море и другие центры океанических субтропических круговоротов вод.

Зверобойный промысел (ради мяса, кожи и жира промышляют моржей и тюленей, ради меха – морских котиков и каланов) и китобойный промысел сейчас ограничены. Для сохранения китов – самых крупных животных на Земле приняты международные соглашения, запрещающие (мораторий 1987 – 1990 гг.) и резко ограничивающие количество, размеры и возраст их вылова. Это вселяет надежду, что китов не постигнет участь морской (стеллеровой) коровы – крупных (длиной до 8 м, массой до 3,5 т) водных млекопитающих, которые были полностью истреблены в результате хищнического промысла.

Промысел беспозвоночных распространен в странах Юго-Восточной Азии и других приморских регионах (Япония, Средиземноморье и др.), где широко употребляют в пищу моллюсков (устрицы, мидии, морские гребешки, кальмары, осьминоги, каракатицы и др.), а из иглокожих – трепангов. Высоко ценятся на мировом рынке ракообразные (крабы, креветки, омары, лангусты).

Двустворчатые моллюски-жемчужницы служат поставщиком жемчуга, который высоко ценится в ювелирном деле. Добычу естественного жемчуга ведут в Красном море, Персидском заливе, у берегов Шри Ланки, Японии, Венесуэлы. Жемчуг научились выращивать искусственно. Наибольший «урожай» получают в Японии, Корее, на Филиппинах.

Важным природным ресурсом Океана являются водоросли, которые используются для приготовления продуктов питания, получения йода, удобрений, на корм скоту, а также для изготовления косметики, бумаги, клея, тканей и т. д.

Планктон используется мало, хотя в последнее время получил некоторое применение криль. Под этим названием объединяют свыше 80 видов разнообразных зоопланктонных организмов, обитающих в полярных и субполярных водах на глубинах до 200 – 300 м, особенно вокруг Антарктиды. Из него вырабатывают пищевой белок и витамины, которые добавляют к рыбным консервам, в сыры, колбасу, к креветочному маслу и в другие продукты.

Хотя органические ресурсы Океана велики, необходимо беречь их от истощения и гибели в связи с загрязнением акваторий, обеспечивать естественное возобновление, переходить от экстенсивного использования и свободной охоты к культурному океаническому хозяйству – разведению морских животных и возделыванию водорослей на научной основе. Наибольший успех марикультура достигла в Японии, на Филиппинах, в Индии, во Франции. В России в Приморском крае есть плантации морских растений, организованы опытные хозяйства по выращиванию устриц и морского гребешка.

Химические и минеральные ресурсы – это, прежде всего, сама вода, растворенные в ней химические элементы, а также полезные ископаемые, залегающие на дне и в грунтах. Из морской воды ежегодно добывают миллионы кубических метров пресной воды в результате дистилляции. В мире уже действуют около 800 опреснительных установок в «районах жажды» (Кувейт, в котором потребляют главным образом опресненную морскую воду, запад США, город Актау на Каспии и др.). Однако стоимость такой пресной воды еще высока. Из морской воды извлекают поваренную соль – треть всей мировой добычи, магний – более 40% мировой добычи, бром – около 70% мировой добычи, калий.

Основные полезные ископаемые, добываемые в море на шельфе,– нефть и газ, которые дают более 90% всех доходов, получаемых от добычи морских полезных ископаемых. Общие запасы нефти на шельфе оценивают в 120–150 млрд т, а число нефтеносных бассейнов, разведанных в осадочной толще океанического шельфа, превышает триста. В большинстве случаев они представляют собою продолжение бассейнов суши. Это шельфы Персидского и Мексиканского заливов, побережье Венесуэлы, «Нефтяные камни» на Каспии. Но есть и чисто морские месторождения, как, например, Северное море. У берегов России известны месторождения нефти на шельфе у Сахалина и недавно открыты в Баренцевом море. Добыча нефти и газа со дна морей продолжает стремительно расти; например, только в Северном море выявлено более 400 нефтяных, газоконденсатных и газовых месторождений, действуют более 300 буровых платформ, принадлежащих Великобритании, Норвегии, Нидерландам, Дании, ФРГ и другим странам, а по дну моря проложено более 6000 км нефте- и газопроводов. Ведется добыча каменного угля (Англия, Япония), железной руды у полуострова Лабрадор. Довольно широко разрабатываются прибрежно-морские россыпи: олова у полуострова Малакка и в Индонезии, рутила и циркония у берегов Австралии, ильменита, циркония и золота у побережий США, алмазов у берегов ЮАР и Намибии, янтаря на берегах Балтийского моря. Велики запасы фосфоритов, стройматериалов (песка, гравия, ракушечника). Дно океанов, особенно Тихого, устлано осадочными железомарганцевыми конкрециями, в состав которых входят никель, медь, кобальт, титан, молибден и другие ценные элементы. Но добыча их из-за большой глубины (более 4 км) и дороговизны пока не производится, хотя есть технические разработки.

Своеобразными ресурсами дна Мирового океана, особенно Атлантического и отчасти Индийского, являются сокровища затонувших судов.

Энергетические ресурсы Океана огромны. К ним относится прежде всего энергия приливов, суммарная мощность которых оценивается в 6 млрд кВт. К тому же это неисчерпаемый источник энергии, обладающий постоянством и экологически чистый. Однако реальной крупной промышленной ПЭС считается электростанция «Ране» во Франции в устье р. Ране, при впадении ее в залив Сен-Мало. Она введена в эксплуатацию в 1966 г., мощность ее 240 тыс. кВт, выработка электроэнергии около 1 млрд кВт-ч/год. Экспериментальная Кислогубская ПЭС на Мурманском побережье (Россия) эксплуатируется с 1968 г., но мощность ее всего 400 кВт. Ведется строительство мощной ПЭС в заливе Фанди (проектная мощность 6 млн кВт), проектируются мощные ПЭС в бухте Мон-Сен-Мишель во Франции и в Бристольском заливе в Англии.

В жарком поясе работают гидротермические станции, использующие разницу температур теплых поверхностных и холодных глубинных вод, например станция в Гвинейском заливе вблизи г. Абиджана мощностью 14 тыс. кВт. В морской воде содержится дейтерий (тяжелая вода) – будущее топливо ядерных реакторов. При использовании энергии волн (есть проекты) человечество получит неиссякаемый источник энергии.

Рекреационные ресурсы. Морская вода обладает целебными свойствами. Морской воздух насыщен многими ионами, которые приносит на побережья дневной морской бриз. Благотворна у моря и нежаркая ровная погода без больших суточных перепадов температуры воздуха. Наибольший эффект достигается сочетанием морских курортов с источниками термальных и минеральных вод (например, Мацеста) и лечебными грязями (Евпатория). На морях умеренного пояса (на Северном, Балтийском и др.) курорты сезонные, чаще летние, но они славятся песчаными пляжами, дюнами, сосновыми лесами. На черноморских курортах (Сочи, Крым, Золотые пески Болгарии), курортах Калифорнии и Флориды длинный купальный сезон. К тому же Южный берег Крыма, район Одессы относятся к одним из самых солнечных районов планеты. А на Средиземном море (Лазурный берег Франции, Адриатическое и Лигурийское побережья Италии, курорты Балеарских островов и Испании и др.) и в жарком поясе курортный сезон круглогодичный. Определенным препятствием для развития океанских курортов в отличие от закрытых морей становятся опасные морские животные (акулы и др.), поэтому необходимы дополнительные вложения средств (службы оповещения, заградительные сетки и пр.).

Все большее развитие получает морской туризм вдоль побережий морей и океанов, особенно там, где красивые ландшафты и знаменитые культурно-исторические памятники. Популярными стали и морские путешествия-круизы на специальных туристских судах с плавучими гостиницами и культурно-развлекательными центрами. Особым видом морского туризма стали путешествия на грузопассажирских судах с каютами для пассажиров вверху и автомобилями в трюмах (между Швецией и Польшей, в проливе Ла-Манш, в Ирландском и Адриатическом морях и т. д.). Базами полярного туризма стали Мурманск и Архангельск, откуда туристы могут совершить поездки к острову Диксон, к заповедному архитектурному ансамблю Соловецких островов.

Огромно значение Океана в транспортном отношении. В XXI в. значение Океана как средства коммуникаций между материками и странами будет возрастать, особенно Тихого. Океан – потенциальный театр военных действий, зона размещения ракетно-ядерного подводного флота.

Охрана природы Океана – это актуальная проблема международного масштаба. В век научно-технической революции резко возросло поступление в Океан загрязняющих веществ: нефти, промышленных и химических отходов (полиэтиленовой пленки, пластмассовых и стеклянных бутылок, старых автопокрышек, лома), бытовых сточных вод, удобрений, пестицидов.

Особенно пагубно для всего живого нефтяное загрязнение, а, по подсчетам ученых, сейчас ежегодно в Океан попадает около 10 млн т нефти и нефтепродуктов при ее добыче, промывке танкеров и их авариях, а также при авариях на буровых установках. Нефтяная пленка нарушает влагообмен, теплообмен и газообмен, в том числе кислородом, губит планктон, рыбу и вообще все живые организмы, которые концентрируются в основном в поверхностном слое воды.

Очень вредно захоронение на дне Океана высокотоксичных отходов, твердых радиоактивных веществ и слив жидких радиоактивных отходов с плутониевых заводов. Загрязнение приводит к нарушению природных взаимосвязей и динамического равновесия, а ведь наша планета – замкнутая система. Океан оказался легкоранимым сразу на больших пространствах в силу своей подвижности. С 1971 г. действует Договор о запрещении размещения на дне океанов и морей ядерного оружия и других видов массового уничтожения людей. Его подписали страны-депозитарии (СССР, США, Великобритания) и десятки других государств. К сожалению, он не везде и не всегда выполняется в силу различных причин.

Для познания природы и тайн Мирового океана проводятся разносторонние научные исследования. 1998 год был Международным годом Океана, работы координировались ЮНЕСКО. Изучение Мирового океана, принадлежащего всему человечеству, стало ярким примером международного сотрудничества.

Принципиально новый метод – исследование Океана из Космоса. С космических орбит ведется изучение динамики вод Океана, взаимодействие его с атмосферой, наблюдение ледовой обстановки, опасных стихийных явлений (цунами, тайфунов, подводной вулканической деятельности), оценка и прогноз пищевых запасов, в частности рыбы, изучение шельфа с целью поиска полезных ископаемых, контроль за загрязнением вод, анализ экологических последствий, вызванных загрязнением, и многое другое. На основании новейших научных данных принимаются решения по рациональному использованию ресурсов Мирового океана и охране его вод.


Введение

Ресурсы Мирового океана

Освоение ресурсов Мирового океана

Заключение

Список использованной литературы


Введение


Мировой океан существует свыше 4 млрд. лет, из них 3 млрд. лет в морях и океанах проходят продукционные процессы фотосинтеза. В Мировом океане малоизменяющийся солевой состав, в воде содержатся практически все элементы таблицы Менделеева. По расчетам, общая масса растворенных в Мировом океане веществ исчисляется огромной цифрой - 50 - 60 трлн. т. В нем обитает свыше 300 тыс. видов животных и более 100 тыс. видов растительности.

Рельеф Мирового океана весьма разнообразен: около 80% его поверхности приходится на глубины более 3 тыс. м и только 8% - на глубины, соответствующие континентальному шельфу.

Площадь Мирового океана - 361 млн. км2, или почти 71% площади земного шара. Мировой океан располагает огромными природными ресурсами, не менее значительными, чем суша.

Объект исследования - ресурсы Мирового океана, предмет исследования - разнообразие основных ресурсов Мирового океана.

Цель работы - рассмотреть ресурсы Мирового океана.

Задачи, которые необходимо решить в ходе работы:

дать характеристику ресурсам Мирового океана;

рассмотреть проблему освоения ресурсов Мирового океана.


Ресурсы Мирового океана


Минеральные ресурсы

Мировой океан, занимающий около 71% поверхности нашей планеты, представляет собой огромную кладовую минеральных богатств. Полезные ископаемые в его пределах заключены в двух различных средах - собственно в океанической водной массе, как основной части гидросферы, и в подстилающей ее земной коре, как части литосферы. По агрегатному состоянию и соответственно условиям эксплуатации их подразделяют на:

) жидкие, газообразные и растворенные, разведка и добыча которых возможна при помощи буровых скважин (нефть, природный газ, соль, сера и др.); 2) твердые поверхностные, эксплуатация которых возможна при помощи драг, гидравлических и иных подобных способов (металлоносные россыпи и илы, конкреции и др.); 3) твердые погребенные, эксплуатация которых возможна шахтно-рудничными способами (уголь, железная и некоторые другие руды).

Широко применяется также подразделение минеральных ресурсов Мирового океана на два больших класса: гидрохимических и геологических ресурсов. К гидрохимическим ресурсам относят собственно морскую воду, которую можно рассматривать и как раствор, содержащий множество химических соединений и микроэлементов. К геологическим относят те минеральные ресурсы, которые находятся в поверхностном слое и недрах земной коры.

Гидрохимические ресурсы Мирового океана - это элементы солевого состава океанских и морских вод, которые можно использовать для хозяйственных нужд. По современным оценкам, такие воды содержат около 80 химических элементов. В наибольшем количестве океаносфера содержит соединения хлора, натрия, магния, серы, кальция, концентрация которых (в мг/л) довольно высока; в эту же группу входят водород и кислород. Все это создает базу для развития «морской» химической промышленности.

Геологические ресурсы Мирового океана - это ресурсы минерального сырья и топлива, содержащиеся уже не в гидросфере, а в литосфере, т. е. связанные с океаническим дном. Их можно подразделить на ресурсы шельфа, материкового склона и глубоководного ложа океана. Главную роль среди них играют ресурсы континентального шельфа, занимающего площадь 31,2 млн. км2, или 8,6% общей площади океана.

Наиболее известный и ценный минеральный ресурс Мирового океана - углеводороды: нефть и природный газ. При характеристике нефтяных и газовых ресурсов Мирового океана обычно, прежде всего имеют в виду наиболее доступные ресурсы его шельфа. Самые крупные нефтегазоносные бассейны на шельфе Атлантического океана разведаны у берегов Европы (Североморский), Африки (Гвинейский), Центральной Америки (Карибский), менее крупные - у берегов Канады и США, Бразилии, в Средиземном и некоторых других морях. В Тихом океане такие бассейны известны у берегов Азии, Северной и Южной Америки и Австралии. В Индийском океане ведущее место по запасам занимает Персидский залив, но нефть и газ обнаружены также на шельфе Индии, Индонезии, Австралии, а в Северном Ледовитом океане - у берегов Аляски и Канады (море Бофорта) и у берегов России (Баренцево и Карское моря). К этому перечню нужно добавить и Каспийское море.

Кроме нефти и природного газа, с шельфом Мирового океана связаны ресурсы твердых полезных ископаемых. По характеру залегания они подразделяются на коренные и россыпные.

Коренные залежи угля, железных, медно-никелевых руд, олова, ртути, поваренной и калийной солей, серы и некоторых других полезных ископаемых погребенного типа генетически обычно связаны с месторождениями и бассейнами прилегающих частей суши. Они известны во многих прибрежных районах Мирового океана, и в отдельных местах их разрабатывают при помощи шахт и штолен.

Прибрежно-морские россыпи тяжелых металлов и минералов следует искать в пограничной зоне суши и моря - на пляжах и в лагунах, а иногда и в полосе затопленных океаном древних пляжей.

Из содержащихся в подобных россыпях руд металлов наибольшее значение имеет оловянная руда - касситерит, залегающая в прибрежно-морских россыпях Малайзии, Индонезии и Таиланда. Вокруг «оловянных островов» этого района они прослеживаются на расстоянии 10-15 км от берега и до глубины 35 м. У берегов Японии, Канады, Новой Зеландии и некоторых других стран разведаны запасы железистых (титаномагнетитовых и монацитовых) песков, у берегов США и Канады - золотоносных песков, у берегов Австралии - бокситов. Еще более распространены прибрежно-морские россыпи тяжелых минералов. Прежде всего это относится к побережью Австралии (ильменит, циркон, рутил, монацит), Индии и Шри-Ланки (ильменит, монацит, циркон), США (ильменит, монацит), Бразилии (монацит). У берегов Намибии и Анголы известны россыпные месторождения алмазов.

Несколько особое положение в этом перечне занимают фосфориты. Большие залежи их обнаружены на шельфе западного и восточного побережий США, в полосе атлантического побережья Африки, вдоль тихоокеанского побережья Южной Америки.

Из других твердых минеральных ресурсов наибольший интерес представляют железомарганцевых конкреции, впервые обнаруженные более ста лет назад английским экспедиционным судном «Челленджер». Хотя конкреции называют железомарганцевыми, поскольку они содержат 20% марганца и 15% железа, в них в меньших количествах имеются также никель, кобальт, медь, титан, молибден, редкоземельные и другие ценные элементы - всего более 30. Следовательно, фактически они являются полиметаллическими рудами. Главные скопления конкреций находятся в Тихом океане, где они занимают площадь 16 млн. км2.

Помимо конкреций, на дне океана имеются железомарганцевые корки, покрывающие породы в зонах средин ноокеанических хребтов. Эти корки нередко располагаются на глубинах 1-3 км. Интересно, что марганца в них содержится гораздо больше, чем в железомарганцевых конкрециях. Встречаются в них и руды цинка, меди, кобальта.

Россия, имеющая береговую линию очень большой протяженности, владеет и самым обширным по площади континентальным шельфом (6,2 млн. км2, или 20% мирового шельфа, из которых 4 млн. км2 перспективны на нефть и газ). Большие запасы нефти и газа уже обнаружены на шельфе Северного Ледовитого океана - прежде всего в Баренцевом и Карском морях, а также в Охотском море (у побережья Сахалина). По некоторым оценкам, с акваториями морей в России связано 2/5 всех потенциальных ресурсов природного газа. В прибрежной зоне известны также месторождения россыпного типа и карбонатные залежи, используемые для получения строительных материалов.

Энергетические ресурсы

В Мировом океане заключены огромные, поистине неисчерпаемые ресурсы механической и тепловой энергии, к тому же постоянно возобновляющейся. Основные виды такой энергии - энергия приливов, волн, океанических (морских) течений и температурного градиента.

Особенно привлекает внимание энергия приливов. Приливные явления известны людям с незапамятных времен и в жизни многих прибрежных стран играли и играют очень большую роль, в какой-то мере определяя весь ритм их жизни.

Общеизвестно, что приливы и отливы происходят два раза в сутки. В открытом океане амплитуда между полной и малой водой составляет примерно 1 м, но в пределах континентального шельфа, особенно в заливах и эстуариях рек, она бывает значительно большей. Суммарную энергетическую мощность приливов обычно оценивают от 2,5 млрд. до 4 млрд. кВт. Добавим, что энергия только одного приливно-отливного цикла достигает примерно 8 трлн. кВт/ч, а это лишь немногим меньше общей мировой выработки электроэнергии в течение целого года. Следовательно, энергия морских приливов - неисчерпаемый источник энергии.

Добавим и такую отличительную черту приливной энергии, как ее постоянство. Океан, в отличие от рек, не знает ни многоводных, ни маловодных лет. К тому же он «работает по графику» с точностью до нескольких минут. Благодаря этому количество вырабатываемой на приливных электростанциях (ПЭС) электроэнергии всегда может быть заранее известно - в отличие от обычных ГЭС, на которых количество получаемой энергии зависит от режима реки, связанного не только с климатическими особенностями территории, по которой она протекает, но и с погодными условиями,

Считается, что наибольшими запасами приливной энергии обладает Атлантический океан. В его северо-западной части, на границе США и Канады, находится залив Фанди, представляющий собой внутреннюю суженную часть более открытого залива Мэн. Этот залив знаменит самыми высокими в мире приливами, достигающими 18 м. Очень высоки приливы и у берегов Канадского Арктического архипелага. Например, у побережья Баффиновой Земли они поднимаются на 15,6 м, В северо-восточной части Атлантики приливы до 10 и даже 13 м наблюдаются в проливе Ла-Манш у берегов Франции, в Бристольском заливе и Ирландском море у берегов Великобритании и Ирландии.

Велики также запасы приливной энергии в Тихом океане. В его северо-западной части особенно выделяется Охотское море, где в Пенжинской губе (северо-восточная часть залива Шелихова) высота приливной волны составляет 9-13 м. На восточном побережье Тихого океана благоприятные условия для использования приливной энергии имеются у берегов Канады, Чилийского архипелага на юге Чили, в узком и длинном Калифорнийском заливе Мексики.

В пределах Северного Ледовитого океана по запасам приливной энергии выделяются Белое море, в Мезенской губе которого приливы имеют высоту до 10 м, и Баренцево море у берегов Кольского полуострова (приливы до 7 м). В Индийском океане запасы такой энергии значительно меньше. В качестве перспективных для строительства ПЭС здесь обычно называют залив Кач Аравийского моря (Индия) и северо-западное побережье Австралии. Однако и в дельтах Ганга, Брахмапутры, Меконга и Иравади приливы тоже составляют 4-6 м.

К числу энергетических ресурсов Мирового океана относят также кинетическую энергию волн. Энергию ветровых волн суммарно оценивают в 2,7 млрд. кВт в год. Опыты показали, что ее следует использовать не у берега, куда волны приходят ослабленными, а в открытом море или в прибрежной зоне шельфа. В некоторых шельфовых акваториях волновая энергия достигает значительной концентрации; а США и Японии - около 40 кВт на 1 м волнового фронта, а на западном побережье Великобритании - даже 80 кВт на 1 м.

Еще один энергетический ресурс Мирового океана - океанические (морские) течения, которые обладают огромным энергетическим потенциалом. Так, расход Гольфстрима даже в районе Флоридского пролива составляет 25 млн. м3/с, что в 20 раз превышает расход всех рек земного шара. А после того как Гольфстрим уже в океане соединяется с Антильским течением, его расход возрастает до 82 млн. м3/с. Уже не раз предпринимались попытки подсчитать потенциальную энергию этого потока шириной 75 км и толщиной 700 - 800 м, двигающегося со скоростью 3 м/с.

Когда говорят об использовании температурного градиента, то имеют в виду источник уже не механической, а тепловой энергии, заключенной в массе океанских вод. Обычно разность температур воды на поверхности океана и на глубине 400 м составляет 12 °С. Однако в акваториях тропиков верхние слои воды в океане могут иметь температуру 25-28°С, а нижние, на глубине 1000 м, - всего 5 °С. Именно в таких случаях, когда амплитуда температур достигает 20° и более, считается экономически оправданным использование ее для получения электроэнергии на гидротермальных (моретермальных) электростанциях.

В целом же энергетические ресурсы Мирового океана правильнее было бы отнести к ресурсам будущего.

Биологические ресурсы

Для биологических ресурсов Мирового океана характерны не только очень большие размеры, но и исключительное разнообразие. Воды морей и океанов, по существу, представляют собой густонаселенный мир множества живых организмов: от микроскопических бактерий до самых крупных животных на Земле - китов. На обширных океанских пространствах, от освещенной Солнцем поверхности до темного и холодного царства морских глубин, обитает около 180 тыс. видов животных, в том числе 16 тыс. различных видов рыб, 7,5 тыс. видов ракообразных, около 50 тыс. видов брюхоногих моллюсков. В Мировом океане насчитывается также 10 тыс. видов растений.

Исходя из образа жизни и местообитания, все живущие в Мировом океане организмы обычно подразделяют на три класса.

К первому классу, обладающему наибольшей биомассой и самым большим разнообразием видов, относят планктон, который, в свою очередь, подразделяют на фитопланктон и зоопланктон. Планктон распространен преимущественно в поверхностных горизонтах океанской толщи (до глубины 100-150 м), причем фитопланктон - главным образом мельчайшие одноклеточные водоросли - служит кормом для многих видов зоопланктона, который по объему биомассы (20-25 млрд. т) занимает в Мировом океане первое место.

Ко второму классу морских организмов относят нектон. Он включает в себя всех животных, способных самостоятельно передвигаться в водной толще морей и океанов. Это рыбы, киты, дельфины, моржи, тюлени, кальмары, креветки, осьминоги, черепахи и некоторые другие виды. Ориентировочная оценка суммарной биомассы нектона - 1 млрд. т, половина ее приходится на рыб.

Третий класс объединяет морские организмы, обитающие на дне океана или в донных отложениях, - бентос. В качестве представителей зообентоса можно назвать различные виды двустворчатых моллюсков (мидии, устрицы и др.), ракообразных (крабы, омары, лангусты), иглокожих (морские ежи) и других донных животных, фитобентос представлен прежде всего разнообразными водорослями. По размерам биомассы зообентос (10 млрд. т) уступает только зоопланктону.

Географическое распространение биологических ресурсов Мирового океана крайне неравномерно. В его пределах довольно четко выделяются очень высокопродуктивные, высокопродуктивные, среднепродуктивные, малопродуктивные и самые малопродуктивные области. Естественно, что наибольший хозяйственный интерес представляют две первые из них. Продуктивные области в Мировом океане могут иметь характер широтных поясов, что в значительной мере обусловлено неодинаковым распределением солнечной энергии. Так, обычно выделяют следующие природно-рыбохозяйственные пояса: арктический и антарктический, умеренные пояса Северного и Южного полушарий, тропическо-экваториальный пояс. Наибольшее хозяйственное значение из них имеет умеренный пояс Северного полушария.

Для более полной характеристики географического распространения биологических ресурсов большой интерес представляет распределение их между отдельными океанами Земли.

Первое место и по общему объему биомассы, и по числу видов занимает Тихий океан. Животный мир его по видовому составу в три-четыре раза богаче, чем других океанов. Фактически здесь представлены все виды живых организмов, населяющих Мировой океан. Тихий океан отличается от других также высокой биологической продуктивностью, особенно в умеренных и экваториальном поясах. Но еще более велика биологическая продуктивность в зоне шельфа: именно здесь обитает и нерестится подавляющее большинство тех морских животных, которые служат объектами промысла.

Очень богаты и разнообразны также биологические ресурсы Атлантического океана. Он выделяется высокой средней биологической продуктивностью. Животные населяют всю толщу его вод. В умеренных и холодных водах обитают крупные морские млекопитающие (киты, ластоногие), сельдевые, тресковые и другие виды рыб, ракообразные. В тропической части океана количество видов измеряется уже не тысячами, а десятками тысяч. Разнообразные организмы обитают и в его глубоководных горизонтах в условиях огромного давления, низких температур и вечной тьмы.

Значительными биологическими ресурсами обладает также Индийский океан, но изучены они здесь хуже и используются пока меньше. Что же касается Северного Ледовитого океана, то преобладающая часть холодных и ледовитых вод Арктики неблагоприятна для развития жизни и поэтому мало продуктивна. Лишь в приатлантической части этого океана, в зоне влияния Гольфстрима, его биологическая продуктивность значительно повышается.

Россия обладает очень большими и разнообразными морскими биологическими ресурсами. В первую очередь это относится к морям Дальнего Востока, причем самое большое разнообразие (800 видов) отмечается у берегов южных Курильских островов, где сосуществуют холоднолюбивые и теплолюбивые формы. Из морей Северного Ледовитого океана наиболее богато биоресурсами Баренцево море.


Освоение ресурсов Мирового океана


Наряду с проблемой водных ресурсов как крупнейшая самостоятельная комплексная проблема встает задача освоения ресурсов Мирового океана.

Океан занимает большую часть поверхности Земли (71%), чем суша. Он обусловил возникновение и эволюцию многих форм жизни: 75% классов и подклассов животных организмов Земли возникли в гидросфере. Биомасса океана включает 150 тыс. видов и подвидов живых организмов. И в настоящее время Мировой океан играет огромную роль в создании необходимых условий для жизни на Земле. Он является поставщиком половины кислорода воздуха и примерно 20% белковой пищи для человечества.

Полагают, что именно Мировой океан в будущем «утолит жажду» человечества. Методы опреснения морской воды еще сложны и дорогостоящи, но такую воду уже используют в Кувейте, Алжире, Ливии, на Бермудских и Багамских островах, в некоторых районах США. На полуострове Мангышлак (Казахстан), также работает установка по опреснению морской воды.

Кроме того, все более реальна возможность использовать еще один источник океанских пресных вод: буксировка в дефицитные страны гигантских айсбергов, откалывающихся от северной и южной «ледяных шапок» Земли.

Дальнейшие исследования и освоение Мирового океана способны повлиять на перспективы решения и других глобальных проблем. Перечислим некоторые из них.

Наиболее важной частью ресурсов Мирового океана являются биологические. Ученые полагают, что этих ресурсов хватит, чтобы прокормить 30 млрд. человек.

Мировой океан является хранилищем огромных ресурсов минерального сырья. С каждым годом все активнее развертывается реальный процесс эксплуатации этих ресурсов. Со дна морей ныне добывается 1/4 мировой нефти, 12% касситерита (у берегов Индонезии, Малайзии и Таиланда), алмазы из прибрежных песков ЮАР и Намибии, многие миллионы тонн фосфоритных конкреций для удобрений. В 1999 г. к востоку от Новой Гвинеи начато осуществление крупного проекта по добыче со дна океана богатейших комплексных руд железа, цинка, меди, золота и серебра. Огромен энергетический потенциал океана (один приливный цикл Мирового океана способен обеспечить человечество энергией, однако пока это «потенциал будущего»).

Для развития мирового производства и обмена велико транспортное значение Мирового океана. Океан является вместилищем большинства отходов хозяйственной деятельности человечества (химическим и физическим воздействием своих вод и биологическим влиянием живых организмов океан рассеивает и очищает основную часть поступающих в него отходов. Однако превышение человечеством самоочищающих возможностей океана чревато очень тяжелыми последствиями).

Освоение ресурсов Мирового океана и его охрана, несомненно, являются одной из глобальных проблем человечества.


Заключение

мировой океан ресурс фитопланктон

Большую часть поверхности Земли занимает океан. Мировой океан играет огромную роль и создании необходимых условий для жизни на Земле. Он является поставщиком кислорода в атмосферу и белковой пищи для человечества,

Полагают, что именно Мировой океан утолит «жажду» человечества. Методы опреснения морской волы еще сложны и дорогостоящи, но такую полу уже используют и Кувейте, Алжире, Ливии, на Бермудских и Багамских островах, и некоторых районах США. В Казахстане на полуострове Мангышлак также работает установка по опреснению морской воды.

Постоянно расширяющиеся знания о ресурсном потенциале океана показывают, что во многих отношениях он может восполнить истощающиеся запасы минеральных веществ на суше. Дальнейшие исследования и хозяйственное освоение Мирового океана способны повлиять на перспективы решения ряда глобальных проблем.

Наиболее важной частью ресурсов Мирового океана являются биологические (рыб, зоо- и фитопланктон). Мировой океан является хранилищем огромных ресурсов минерального сырья. Велик также энергетический потенциал океана (только один приливной цикл способен обеспечить человечество энергией - однако пока это «потенциал будущего»). Для развития мирового хозяйства и международного обмена очень велико транспортное значение Мирового океана. Наконец, океан - это основной резервуар ценнейшего и все более дефицитного ресурса - пресной воды (после опреснения морской воды),

Ресурсы Мирового океана огромны, но также велики и его проблемы. В XX в. влияние человеческой деятельности на Мировой океан приняло катастрофические масштабы: происходит загрязнение океана сырой нефтью и нефтепродуктами, тяжелыми металлами и другими высоко- и среднетоксичными веществами, обыкновенным мусором. В Мировой океан ежегодно поступает несколько миллиардов тонн жидких и твердых отходов, в том числе с речным стоком в моря. Химическим и физическим воздействием своих вод и биологическим влиянием живых организмов океан рассеивает и очищает основную часть поступающих в него отходов. Тем не менее, океан все труднее справляется с возрастающим объемом отходов и его загрязнением. Освоение ресурсов океана и его охрана является одной из глобальных проблем человечества.


Список использованной литературы


1.Алисов Н.В. Экономическая и социальная география мира (общий обзор). - М.: Гардарики, 2000.

2.Бутов В.И. Экономическая и социальная география зарубежного мира и Российской Федерации. - 2-е изд., перераб. и доп. - М: ИКЦ «МарТ»; Ростов н/Д: Издательский центр «МарТ», 2006.

.Максаковский В.П. Географическая картина мира: В 2 кн. Кн.1: Общая характеристика мира. - М.: Дрофа, 2003.

.Родионова И.А. Экономическая география. - 7-е изд. - М.: Московский лицей, 2004.

.Социально-экономическая география зарубежного мира / Под ред. В.В. Вольского. - 2-е изд., испр. - М.: Дрофа, 2003.


Теги: Ресурсы Мирового океана Реферат География, экономическая география

Поделиться: