Конспект урока с презентацией электромагнитные волны. Электромагнитные волны план-конспект урока по физике (11 класс) на тему. ~ электрическое поле

Конспект 32. Электромагнитные волны (ЭМВ).

3. Электромагнитные волны

Определение. Электромагнитное поле – форма материи, которая является системой переменного электрического и магнитного полей, взаимно порождающих друг друга.
Определение. Электромагнитная волна (ЭМВ) – электромагнитное поле, которое распространяется в пространстве с течением времени.
Примеры излучателей электромагнитных волн: колебательный контур (основной элемент радиопередатчика/приемника), солнце, лампочка, рентген-аппарат и др.
Замечание. Генрих Герц экспериментально подтвердил существование ЭМВ, используя для приема и передачи ЭМВ колебательные контуры, настроенные в резонанс (вибратор Герца).

Основные свойства ЭМВ:
1) Скорость распространения ЭМВ в вакууме – это скорость света ;
2) ЭМВ – это поперечная волна, векторы напряженности , магнитной индукции и скорости распространения взаимно перпендикулярны;

3) Если ЭМВ излучается колебательным контуром, то ее период и частота совпадают с частотой колебаний контура;
4) Как и для всех волн, длина ЭМВ рассчитывается по формуле .
Шкала электромагнитных волн :

Название диапазона Описание Использование в технике
Низкочастотное излучение Источники излучения, как правило, приборы переменного тока Нет областей массового применения
Радиоволны Излучаются различными радиопередатчиками: мобильные телефоны, радиолокаторы, теле- и радиостанции и т.п. Длинные радиоволны при распространении могут огибать земную поверхность, короткие отражаются от ионосферы Земли, ультракороткие проходят сквозь ионосферу Используются для передачи информации: телевидение, радио, интернет, мобильная связь и пр.
Инфракрасное излучение Источниками являются все тела, и интенсивность излучения тем выше, чем больше температура тела.
Практически во всем спектре является носителем теплового излучения
Приборы ночного видения, тепловизоры, инфракрасные обогреватели, низкоскоростные каналы связи
Видимый свет Излучаются осветительными приборами, звездами и пр.
Диапазон длин волн
λ∈(380 нм; 700 нм).
К восприятию этого излучения чувствительны глаза человека.
Различные частоты (длины волн) воспринимаются человеком как различные цвета – от красного до фиолетового
Фото- и видеозаписывающая техника, микроскопы, бинокли, телескопы и т.п.
Ультрафиолетовое излучение Основные источники: Солнце, ультрафиолетовые лампы.
Воздействует на кожу человека так, что в умеренных дозах способствует выработке пигмента меланина и потемнению кожи, а при большой интенсивности приводит к ожогам.
Способствует выработке в коже человека витамина группы D.
Обеззараживание воды и воздуха, аппараты проверки подлинности ценных бумаг, солярии
Рентгеновское излучение Основными источниками являются рентгеновские трубки, в которых происходит быстрое торможение заряженных частиц.
Рентгеновское излучение способно проникать сквозь вещество. Является вредоносным для живых организмов при излишнем облучении
Рентгенография, флюорография, досмотр вещей в аэропортах и т.п.
γ – излучение Как правило, является одним из продуктов ядерных реакций.
Это одно из самых высокоэнергетических и проникающих излучений. Является вредоносным и опасным для живых организмов
Дефектоскопия изделий, лучевая терапия, стерилизация, консервирование пищевых продуктов

Определение. Радиолокация – обнаружение и определение места нахождения различных объектов с помощью радиоволн. Она базируется, прежде всего, на свойствах отражения радиоволн.
Замечание. Для радиолокации используется прибор, который обычно называют радаром, его основные элементы – это передатчик и приемник.

– расстояние до объекта в радиолокации, м
Где t – время прохождения сигнала до цели и обратно, с
c – скорость света, м/с
Замечание. Принцип радиолокации аналогичен принципу эхолокации (см. конспект №30).
Ограничения в дальности обнаружения целей и в односторонней передаче сигнала:
1) Максимальная дальность обнаружения цели зависит от интервала времени между двумя последовательными импульсами радиолокатора ():
– максимальное расстояние радиолокации, м
2) Минимальная дальность обнаружения цели зависит от продолжительности импульса радиолокатора ():
– минимальное расстояние радиолокации, м
3) Дальность передачи сигнала ограничена формой Земли;
4) Дальность передачи сигнала ограничена мощностью радиопередатчика и чувствительностью принимающей антенны:
– минимальная мощность сигнала, который может принимать антенна (чувствительность), Вт
Где – мощность передатчика, Вт
S – площадь поверхности принимающей антенны, м²
R – расстояние от передатчика до антенны, м
Замечание. В 1-3 пунктах при определении дальности распространения сигнала не учитывается, что мощность передающей антенны и чувствительность принимающей ограничены.

Название предмета

Физика

Класс

УМК

Физика. 11 класс. В.А. Касьянов (базовый уровень), 2014 год

Уровень обучения

базовый

Тема урока

Электромагнитные волны

Общее количество часов, отведённое на изучение темы

Место урока в системе уроков по теме

1 урок по теме «Излучение и прием электромагнитных волн радио- и СВЧ-диапазона», 5 часов

Цель урока

Изучить понятие электромагнитная волна, ее свойства и условие возникновения.

Задачи урока

Обучающие: умение делать логические заключения на основании данных физического эксперимента, применять теоретические знания для решения качественных и количественных задач.

Развивающие: развитие системного и целостного восприятия окружающего мира и физических явлений происходящих в нем.

Воспитательные: формирование умения организовывать собственную учебную деятельность, добросовестное отношение к учебному процессу.

Планируемые результаты

Усвоение гипотезы Максвелла; знание опытов Герца и умение их грамотно интерпретировать; понимание физической природы электромагнитной волны.

Техническое обеспечение урока

Доска, мультимедийный проектор, портреты ученых.

Дополнительное методическое и дидактическое обеспечение урока

Портреты английского физика Джеймса Клерка Максвелла и немецкого физика Генриха Герца

1 Умбетова Л. И., авторская разработка урока «Электромагнитные волны. 9 класс»

Содержание урока

    Организационный этап.

Приветствие обучающихся. Проверка явки и готовности обучающихся к уроку.

    Проверка домашнего задания.

Ребята, мы приступаем к изучению нового раздела «Электромагнитное излучение». Для успешного освоения новых знаний я просил вас к сегодняшнему уроку повторить раздел «Механические колебания и волны» за курс 10 класса. Предлагаю выполнить тест.

Тест 1 : «Механические колебания и волны» ( тест с взаимопроверкой )

Вариант 1

1. Какое из перечисленных ниже движений является колебанием?

А. Движение качели.

Б. Движение мяча падающего на землю.

В. Движение спортсмена совершающего прыжок в длину.

2. Математический маятник совершает за 2 минуты 60 полных колебаний. Частота колебаний математического маятника равна:

А.30 Гц. Б. 0,5 Гц. В. 2 Гц.

3. Как изменится частота колебаний математического маятника, если длину уменьшить 4 раза

А.Увеличится 4 раза

Б.Уменьшится 2 раза.

В. Увеличится 2 раза.

4. Циклическая частота колебаний математического маятника 2π. Период изменения потенциальной энергии равен

А. 0,5 с. Б. 6,28 с. В. 1 с.

5. Расстояние между ближайшими гребнями волны в море 20 м. С какой скоростью распространяются волны, если период колебаний частиц в волне 100 с?

А. 0,2 м/с Б. 2000 м/с В. 5 м/с

Вариант 2

1. Как изменится период колебаний маятника на пружине в вертолете, движущемся с ускорением, направленным вертикально вниз?

А. Не изменится.

Б. Увеличится.

В. Уменьшится.

2. Как изменится период колебаний груза на пружине, если жесткость пружины увеличить 4 раза:

А.Увеличится 4 раза

Б.Уменьшится 2 раза.

В. Уменьшится 4 раза.

3. Каков период колебаний груза на пружине, если жесткость пружины 40 Н/м, а масса груза 0,4 кг.

А. 10 с. Б. 6,28 с. В. 0,628 с.

4. В Исаакиевском соборе в Петербурге висел маятник с длиной подвеса 98 м. Он совершает за одну минуту сколько колебаний.

А. 1 колебание

Б. 3 колебаний.

В. 98 колебаний.

5. Какова скорость распространения волны, если длина волны 2 м, а частота колебаний 200 Гц?

А. 400 м/с Б. 100 м/с В. 0,01 м/с

Ответы:

Вариант 1

1-А

2-Б

3-В

4-А

5-А

Вариант 2

1-А

2-Б

3-В

4-А

5-А

    Актуализация знаний.

Ребята, давайте вспомним некоторые основные определения (фронтальный опрос ):

Что называют колебанием (колебательным движением)?

Какие бывают колебания?

Что называют волной?

Какие бывают волны?

Какие характеристики имеет волна?

    Постановка цели и задач урока. Мотивация учебной деятельности учащихся.

Мы с вами выяснили, что механическая волна это распространяющееся в пространстве от места возникновения колебание частиц вещества. Волны бывают разные, а что если частица вещества будет иметь электрический заряд? Нам известно, что ускорено двигающаяся заряженная частица, порождает в пространстве вокруг себя электромагнитное поле. Как вы думаете, какие волны будет порождать заряженная частица, совершающая колебательное движение? Все верно – электромагнитные волны, это и будет темой сегодняшнего урока.

Огромную роль в жизни современного человека играют электромагнитные волны – с их помощью мы передаем информацию, общаемся, обмениваемся данными, изучаем окружающий мир и многое другое. Ранее изученные нами, механические волны имеют много общего с электромагнитными волнами, однако есть и существенные отличия. Сегодня на уроке нам предстоит разобраться с понятием электромагнитные волны, ответить на вопросы как получаются электромагнитные волны и какими свойствами они обладают.

    Первичное усвоение новых знаний.

Гипотеза Максвелла. На основе представлений Майкла Фарадея об электрических и магнитных полях английский физик Джеймс Клерк Максвелл создал теорию электромагнетизма. По представлениям Фарадея, любые изменения магнитного поля порождают вихревое электрическое поле.

Максвелл в 1864 г. предположил, что, и любое изменение электрического поля сопровождается возникновением вихревого магнитного поля. Силовые линии этого поля замкнуты, они расположены вокруг силовых линий переменного электрического поля точно так же, как вокруг проводников с электрическим током.

Согласно гипотезе Максвелла процесс взаимного порождения изменяющимся электрическим полем магнитного поля и изменяющимся магнитным полем электрического поля может неограниченно распространяться, захватывая всё новые и новые области пространства.

Распространяющиеся в пространстве переменные электрическое и магнитное поля, порождающие взаимно друг друга, называются электромагнитной волной.

Скорость распространения электромагнитных волн.

Максвелл на основе своей теории математически доказал, что в вакууме скорость с электромагнитной волны должна быть равна:

с = 299 792 458 м/с ~ 300 000 км/с.

Для подтверждения гипотезы Максвелла о существовании электромагнитного поля необходимо было экспериментальное открытие электромагнитных волн.

Открытие электромагнитных волн.

Электромагнитные волны были открыты немецким физиком Генрихом Герцем в 1887 г. В своих опытах Герц использовал открытый колебательный контур – два металлических стержня с шарами на концах, в которых при электрическом разряде возникали электромагнитные колебания. Герц обнаружил, что при подаче высокого напряжения между шарами происходил электрический разряд и одновременно, на некотором расстоянии от них, возникала искра между шарами другого колебательного контура. Это доказывало, что при электрических колебаниях в контуре в пространстве возникает вихревое переменное электромагнитное поле. Это поле создаёт электрический ток в витке проволоки.

Измерив частоту ν гармонических колебаний в контуре и длину λ электромагнитной волны, Герц определил скорость электромагнитной волны:

v = λ·ν

Значение скорости электромагнитной волны, полученной в эксперименте Герца, совпало со значением скорости электромагнитной волны по гипотезе Максвелла. Так представления Фарадея о существовании электрических и магнитных полей как физической реальности получили экспериментальное подтверждение.

Силовые линии электрического и магнитного полей в электромагнитной волне перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны.

Свет - электромагнитная волна. Вычисленная на основании гипотезы Максвелла скорость электромагнитной волны совпала с наблюдаемой в опытах скоростью света. Это совпадение позволило предположить, что свет является одним из видов электромагнитных волн.

5. Первичная проверка понимания.

Ребята предлагаю вам составить опорную таблицу в своих тетрадях.

(Опорная таблица составляется обучающимися в процессе изучения нового материала, на основе рассказа учителя и материала учебника).

М. Фарадей ввел понятие поля:

    электрическое поле вокруг покоящегося заряда,

    магнитное поле вокруг движущихся зарядов (тока).

Электромагнитная индукция: при изменении магнитного поля возникает вихревое электрическое поле.

В 1862 г. Д.К. Максвелл ; гипотеза: при изменении электрического поля возникает вихревое магнитное поле. Идея о едином электромагнитном поле.

Электромагнитная волна – распространяющееся в пространстве электромагнитное поле(колебания векторов).

Главное условие возникновения электромагнитной волны - ускоренное движение электрических зарядов.

Электромагнитная волна поперечна . Направление скорости электромагнитной волны совпадает с направлением движения правого винта при повороте ручки буравчика вектора к вектору .

Электромагнитные волны были открыты Г. Герцем (1887).

Закрытый колебательный контур электромагнитных волн не излучает.

Вибратор Герца – открытый колебательный контур. Электрическая искра в излучателе является источником электромагнитной волны. В приемнике волна порождает электромагнитные колебания – слабые искры.

Герц обнаружил электромагнитные волны, измерил их скорость с = 3 . 10 8 м/с, которая совпала с рассчитанной Максвеллом.

    Первичное закрепление.

Применим ваши опорные таблицы для выполнения следующих заданий.

Ответить на вопросы ( ):

1. Какую гипотезу высказал Максвелл при создании теории электромагнетизма?
2. Какой эксперимент послужил доказательством правильности теории близкодействия?
3. Как Герц измерил скорость электромагнитной волны?

4. Какой факт является доказательством того, что свет - электромагнитная волна?
5. Что такое электромагнитная волна? Что в ней происходит, т.е. какова природа этого физического объекта?

Решить задачи ( индивидуальные ответы обучающихся ):

1. На какой частоте работает радиопередатчик, излучающий волну длиной 30 метров? (10 7 Гц)

2. Какова длина волны телевизионного сигнала, если несущая частота равно 50 МГц? (6 м)

3. Определите частоту и длину волны радиопередатчика, если период его электрических колебаний равен 10 -6 с? (1 МГц; 300 м)

    Информация о домашнем задании, инструктаж по его выполнению.

§ 47; вопросы 1-5.

Решить задачу: чему равен период колебаний в ЭМВ, распространяющейся в воздухе с длиной волны 3 м? (0,01 мкс)

    Рефлексия (подведение итогов занятия)

+

(все понятно )

( интересно , хочу узнать подробнее )

( вызвало затруднение )

Открытый урок по физике 11-го класса: "Свойства электромагнитных волн, распространение их и применение"
Тема урока: Свойства электромагнитных волн. Распространение и применение электромагнитных волн.
Цель урока: повторить механические волны и их характеристики; понятие электромагнитной волны; их свойства, распространение и применение. Показать роль эксперимента в торжестве теории. Расширить кругозор учащихся.
На доске плакат, на котором указываются этапы работы класса: “Вспоминай – смотри – делай выводы – поделись интересными идеями”.
Оборудование урока:
На столе комплект приборов для изучения свойств электромагнитных волн, громкоговоритель, выпрямитель универсальный ВУП, усилитель низкой частоты, провода.
Модель плоскополяризованной волны
Таблица №1 “Классификация радиоволн и область их применения”.
Таблица №2 “Распространение радиоволн”. (Справка: таблицы и модель электромагнитных волн выполнены учащимися)
Доклады учащихся (выше упомянутые).
У каждого учащегося листок с заданием (самостоятельная работа)
Портреты ученых (Д.Максвелл, Г.Герц, А.С.Попов)
Постановка задачи.
На уроке мы изучим свойства электромагних волн на примере радиоволн (от мм до долей сотен км). Особенностью их распространения и применения. Услышите интересные сообщения ваших одноклассников о их применении. На столе пред вами листочки с заданиями, которые по ходу урока вами будут заполнены.
Этапы урока:
Актуализация опорных знаний (фронтальная беседа)
Что такое волна?
Виды волн по направлению изменения физических величин и по их природе.
Характеристики волны: – длина волны (расстояние между соседними горбами (впадинами)); – частота колебаний; v – конечная скорость распространения.
Связь между ними.
Что такое электромагнитная волна?
Что общего между механическими и электромагнитными волнами (переносят энергию и имеют конечную скорость).
У электромагнитной волны нет горбов (впадин), в ней вектор напряженности электрического поля Е и магнитной индукции В изменяются по синусоидальному закону, взаимно перпендикулярны друг другу и направлению распространения волны. Демонстрируется модель электромагнитной волны, выполненная из цветной бумаги на спице. (При вращении ее создается впечатление, что вектора Е и В изменяются во всевозможных направлениях, перпендикулярных направлению ее движения). (рис. 65, стр.70 Физика-11, Г.Я.Мякишев, Б.Б.Буховцев)
II. Изучение нового материала.
Разрабатывая теорию электромагнитного поля Д.Максвелл в 60-х годах IXX века теоретически обосновал возможность существования электромагнитных волн (на основе составленных им дифференцированных уравнений) и даже вычислил скорость их распространения. Она совпала со скоростью света v=с=3*108м/с. Это дало Максвеллу основание сделать заключение: свет – это один из видов электромагнитных волн.
Выводы Максвелла были признаны далеко не всеми физиками – современниками Максвелла. Требовалось экспериментальное подтверждение существования электромагнитных волн. Теория без практики мертва!
Такой эксперимент был выполнен в 1888 году немецким физиком Г.Герцем. Опыты Герца блестяще подтвердили теорию Максвелла. Но немецкий физик не видел перспективы их применения. А.С.Попов, русский физик, сумел найти им практическое применение, т.е. дал им путевку в жизнь. Была осуществлена безпроволочная связь с помощью электромагнитных волн.
Для получения электромагнитной волны необходимо создать колебания заряда высокой частоты. Это возможно осуществить в открытом колебательном контуре. Интенсивность излучения электромагнитной волны пропорциональна 4-й степени частоты. Низкочастотные колебания (звуковые) антенна не излучает.
Эксперимент: Современные технические устройства позволяют получить электромагнитные волны и изучить их свойства. Лучше использовать волны сантиметрового диапазона (=3см). Километровые волны излучаются специальным генератором сверхвысокой частоты (СВЧ). Генератор с помощью рупорной антенны излучает электромагнитные волны. Электромагнитная волна достигая приемника преобразуются в электрические колебания и усиливаются усилителем и подаются на громкоговоритель. Электромагнитные волны излучаются рупорной антенной в направлении от рупора. Приемная антенна в виде такого же рупора принимает волны, которые распространяются вдоль ее оси.(общий вид установки изображен на рис.81)
Демонстрируются свойства электромагнитных волн:
Прохождение и поглощение волн (картон, стекло, дерево, пластмасса и т.д.);
Отражение от металлической пластинки;
Изменение направления на границе диэлектрика (преломление);
Поперечность электромагнитных волн, доказывается поляризацией с помощью металлических стержней;
Интерференция;
Учащиеся после демонстрации записывают свойства электромагнитных волн (задание А).
Задание А.
Свойства электромагнитных волн:
Отражаются от (проводников); (рис.82)
Проходят через (диэлектрики);
Преломляются на границе (диэлектрика); (рис.83)
Интерферируют - ;
Являются (поперечными);
Таким образом, опыты доказали существование электромагнитных волн и помогли изучить их свойства.
Классификация электромагнитных волн – (радиоволн).
Обращается внимание учащихся на таблицу №1, на которой радиоволны распределены по видам, длинам, частотам и указана область применения их. После изучения они выполняют задание “В”:
Какие электромагнитные волны называют радиоволнами?
Какие радиоволны используются в:
А) радиовещании
Б) телевидении
В) космической связи
Таблица 1. Классификация радиоволн.

М
,МГц
Область применения

Сверх длинные
СВД
105 – 104
3*10-3 – 3*10-2
Радиотелеграфная связь, передача метеосводки и сигналов точного времени, связь с подводной лодкой.

Длинные волны
ДВ
104 – 103
3*10-2 – 3*10-1
Радиовещания, радиотелеграфная связь и радиотелефонная связь, радиовещание.

Средние волны
СВ
103 – 102
3*10-1 - 3
тоже

Короткие волны КВ
102 - 10
3 - 30
Радиовещание, радиотелеграфная связь, связь с космическими спутниками, радиолюбительская связь и др.

Ультракороткие волны УКВ
10 – 0,001
30 – 3*105
Радиовещание, телевидение, радиолюбительская, космическая и др.

Распространение радиоволн.
Как распространяется радиоволна – вопрос не второстепенный. На практике от решения этого вопроса зависит качество при приеме.
На распространение радиоволн влияют следующие факторы:
Физические и геометрические свойства поверхности Земли;
Наличие ионосферы, т.е. ионизированного газа на высоте 100 – 300 км;
Искусственные сооружения или объекты (дома, самолеты и т.п.)
Ионизация воздуха вызвана электромагнитным излучением Солнца и потоками заряженных частиц, излучаемых им. Проводящая ионосфера отражает радиоволны 10м. Но способность ионосферы отражать и поглощать радиоволны существенно меняется в зависимости от времени суток и времени года.
На таблице №2 (см. стр. 85 учебника) изображены наиболее типичные варианты распространения радиоволн разного диапазона около поверхности Земли. При прохождении радиоволн наблюдаются и интерференция, и дифракция (огибание выпуклой поверхности Земли)
Применение радиоволн.
Краткие сообщения учащихся:
Радио, как средство связи – Баишева Капиталина.
Становление якутского радио – Потапова Юлия.
История сотовой связи в Якутии (Горизонт-РТ) – Марков Дмитрий.
Спутниковая связь – Васильев Александр.
Микроволновая терапия – Александрова Аня.
Радиотелеметрия (стр.258-259, Н.М.Ливенцев, Курс физики для медицинских ВУЗов) – Печенкина Лариса.
Изучение нового материала окончено. Прошу выполнить задание “С”.
Определить на какой длине работают местные радиостанции:
Вариант1. Частоты станций.
Радио РИМ = 101,7 МГц
Микс мастер = 102,5 МГц
НТВ = 99,8 МГц
СТВ = 105,7 МГц
Радио центр = 103,6 МГц
Виктория = 103,1 МГц
Варианты указаны на ваших листках.
Закрепление:
Почему зимой и ночью радиоприем лучше, чем летом и днем?
Почему радиоприемники плохо работают, когда машина проезжает под эстакадой или мостом?
Почему башни телецентра строят высокими?
Почему при работе на коротких волнах возникают зоны “молчания”?
Почему нельзя осуществить радиосвязь между подводными лодками, находящимися на некоторой глубине в океане?
Задание на дом: §§ 35,36,37, повторить §§ 28-30.
Спасибо за участие и помощь. Урок окончен.

Рисунок 1Рисунок 2

Сценарий проведения урока с использованием современных педагогических технологий.

Тема урока

«Электромагнитные волны»

Цели урока:

    Обучающая : Изучить электромагнитные волны, историю их открытия, характеристики и свойства.

    Развивающая : развивать умение наблюдать, сравнивать, анализировать

    Воспитывающая : формирование научно-практического интереса и мировоззрения

План урока:

    Повторение

    Ознакомление с историей открытия электромагнитных волн:

    1. Закон Фарадея (проведение опыта)

      Гипотеза Максвелла (проведение опыта)

  1. Графическое и математическое представление электромагнитной волны

    1. График электромагнитной волны

      Уравнения электромагнитной волны

      Характеристики электромагнитной волны: скорость распространения, частота, период, амплитуда

    Экспериментальное подтверждение существования электромагнитных волн.

    1. Закрытый колебательный контур

      Открытый колебательный контур. Опыты Герца

    Свойства электромагнитных волн

    Актуализация знаний

    Получение домашнего задания

Оборудование:

    Компьютер

    Интерактивная доска

    Проектор

    Катушка индуктивности

    Гальванометр

    Магнит

    Программно-аппаратный цифровой измерительный комплекс лабораторного оборудования «Научные развлечения»

    Персональные готовые карточки с графическим представлением электромагнитной волны, основными формулами и домашним заданием (Приложение 1)

    Видеоматериал из электронного приложения к комплекту Физика 11 класс (УМК Мякишев Г . Я ., Буховцев Б.Б.)

ДЕЯТЕЛЬНОСТЬ УЧИТЕЛЯ

Информационная карта

ДЕЯТЕЛЬНОСТЬ УЧЕНИКА

Мотивационный этап – Введение в тему урока

Дорогие ребята! Сегодня мы с вами приступим к изучению последнего раздела в большой теме «Колебания и волны» к электромагнитным волнам.

Мы узнаем историю их открытия, познакомимся с учеными, приложившим к этому свои руки. Узнаем как смогли впервые получить электромагнитную волну. Изучим уравнения, график и свойства электромагнитных волн.

Для начала, давайте вспомним, что такое волна и какие виды волн вы знаете?

Волна - это колебания, распространяющиеся во времени. Волны бывают механические и электромагнитные.

Механические волны – разнообразны, они распространяются в твердых, жидких, газообразных средах, можем ли мы их засечь с помощью наших органов чувств? Приведите примеры.

Да, в твердых средах – это могут быть землетрясения, колебания струн музыкальных инструментов. В жидкости- волны на море, в газах - это распространения звуков.

С электромагнитными волнами не все так просто. Мы с вами находимся в классе и совершенно не чувствуем и не осознаем какое количество электромагнитных волн пронизывает наше пространство. Может кто-то из вас уже может привести примеры волн, которые здесь присутствуют?

Радиоволны

Телевизионные волны

- Wi - Fi

Свет

Излучения мобильных телефонов и оргтехники

К электромагнитным излучениям относятся и радиоволны и свет от Солнца и рентген и радиация и многое другое. Если бы мы визуализировали бы их, то за таким огромным количеством электромагнитных волн не смогли бы увидеть друг друга. Они служат главным носителем информации в современной жизни и в то же время являются мощным отрицательным фактором, воздействующим на наше здоровье.

Организация деятельности учащихся по созданию определения электромагнитной волны

Сегодня мы с вами пройдем по следам великих ученых физиков, открывших и сгенерировавших электромагнитные волны, узнаем, какими уравнениями они описываются, исследуем их свойства и характеристики. Записываем тему урока «Электромагнитные волны»

Мы с вами знаем, что в 1831г. Английский физик Майкл Фарадей экспериментально открыл явление электромагнитной индукции. В чем оно проявляется?

Давайте повторим один из его опытов. Какова формула закона?

Учащимся проводится опыт Фарадея

Изменяющееся во времени магнитное поле приводит к появлению ЭДС индукции и индукционного тока в замкнутом контуре.

Да, в замкнутом контуре появляется индукционный ток, который мы регистрируем с помощью гальванометра

Таким образом, Фарадей опытным путем показал, что между магнетизмом и электричеством существует прямая динамическая связь. При этом, не получивший систематического образования и слабо владевший математическими методами Фарадей не мог подтвердить свои опыты теорией и математическим аппаратом. В этом ему помог другой выдающийся английский физик Джеймс Максвелл (1831-1879)

Максвелл дал несколько иную трактовку закону электромагнитной индукции: « Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты»

Итак, даже если проводник не замкнут, изменение магнитного поля вызывает в окружающем пространстве индукционное электрическое поле, которое является вихревым. Каковы свойства вихревого поля?

Свойства вихревого поля:

    Его линии напряженности замкнуты

    Не имеет источников

Также нужно добавить, что работа сил поля по перемещению пробного заряда по замкнутому пути равна не нулю, а ЭДС индукции

Кроме того Максвелл выдвигает гипотезу о существовании обратного процесса. Как вы думаете, какую?

«Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле»

А как мы можем получить изменяющееся во времени электрическое поле?

Изменяющимся во времени током

Что представляет из себя ток?

Ток- упорядоченно движущиеся заряженные частицы, в металлах- электроны

Тогда как они должны двигаться, чтобы ток был переменным?

С ускорением

Правильно, именно ускоренные движущиеся заряды вызывают переменное электрическое поле. Теперь попробуем зафиксировать изменение магнитного поля с помощью цифрового датчика, поднося его к проводам с переменным током

Ученик проводит эксперимент по наблюдению изменений магнитного поля

На экране компьютера мы наблюдаем, что при поднесении датчика к источнику переменных токов и его фиксации происходит непрерывное колебание магнитного поля, а значит перпендикулярно ему возникает переменное электрическое поле

Таким образом, возникает непрерывная взаимосвязанная последовательность: изменяющееся электрическое поле порождаем переменное магнитное, которое своим явлением снова порождает изменяющееся электрическое поле и т.д.

Однажды начавшийся в некоторой точке процесс изменения электромагнитного поля будет далее непрерывно захватывать все новые и новые области окружающего пространства. Распространяющееся переменное электромагнитное поле и есть электромагнитная волна.

Итак, гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе ему удалось вывести систему уравнений, описывающую взаимные превращения магнитного и электрического полей и даже определить их некоторые свойства.

Ребятам раздаются персональные карточки с графиком и формулами

Выкладки Максвелла:

Организация деятельности учащихся на определение скорости электромагнитных волн и других характеристик

ξ-диэлектрическая проницаемость вещества, мы считали емкость конденсатора, - магнитная проницаемость вещества – характеризуем магнитные свойства веществ, показывает будет вещество парамагнетиком, диамагнетиком или ферромагнетиком

    Давайте рассчитаем скорость электромагнитной волны в вакууме, тогда ξ = =1

Ребята рассчитывают скорость , после чего проверяем все на проекторе

    Длина, частота, циклическая частота и период колебаний волны вычисляются по знакомым нам из механики и электродинамике формулам, напомните мне их пожалуйста.

Ребята записывают на доске формулы λ=υТ, , , проверяем их правильность на слайде

Максвелл также теоретически вывел формулу энергии электромагнитной волны, причем . W эм ~ 4 Значит, чтобы легче зафиксировать волну, необходимо, чтобы она была высокой частоты.

Теория Максвелла вызвала резонанс в физическом обществе, но экспериментально он не успел подтвердить свою теорию, тогда эстафету подхватил германский физик Генрих Герц (1857- 1894). Удивительно, но Герц хотел опровергнуть теорию Максвелла, для этого он придумал простое и гениальное решение по получению электромагнитных волн.

Давайте вспомним, где мы уже наблюдали взаимное превращение электрической и магнитной энергий?

В колебательном контуре.

В закрытом колебательном контуре, из чего он состоит?

Это цепь, состоящая из конденсатора и катушки, в которой происходят взаимные электромагнитные колебания

Все верно, только колебания происходили «внутри» цепи и главной задачей ученых стало генерирование этих колебаний в пространство и, естественно, их регистрация.

Мы уже сказали, что энергия волны прямо пропорциональна четвертой степени частоты . W эм ~ν 4 . Значит, чтобы легче зафиксировать волну, необходимо, чтобы она была высокой частоты. Какой формулой определяется частота в колебательном контуре?

Частота колебаний в закрытом контуре

Что мы можем сделать, чтобы увеличить частоту?

Уменьшить емкость и индуктивность, а значит уменьшить количество витков в катушке и увеличить расстояние меду пластинами конденсатора.

Тогда Герц постепенно «распрямил» колебательный контур, превратив его в стержень, названный им "вибратором".

Вибратор состоял из двух проводящих сфер диаметром 10-30 см, укрепленных на концах проволочного разрезанного посредине стержня. Концы половин стержня в месте разреза оканчивались небольшими полированными шариками, образуя искровой промежуток в несколько миллиметров.

Сферы подсоединялись ко вторичной обмотке катушки Румкорфа, являвшейся источником высокого напряжения.

Индуктор Румкорфа создавал на концах своей вторичной обмотки очень высокое, порядка десятков киловольт, напряжение, заряжающее сферы зарядами противоположных знаков. В определенный момент напряжение между шарами было больше напряжения пробоя и в искровом промежутке вибратора возникала электрическая искра , происходило излучение электромагнитных волн.

Давайте вспомним явление грозы. Молния – это та же искра. Как появляется молния?

Рисунок на доске:

Если между землей и небом возникает большая разность потенциалов, происходит «замыкание» цепи – возникает молния, ток проводится через воздух, несмотря на то, что он диэлектрик, напряжение снимается.

Таким образом, Герцу удалось сгенерировать э-м волну. Но надо еще её зарегистрировать, для этой цели в качестве детектора, или приемника, Герц использовал кольцо (иногда прямоугольник) с разрывом - искровым промежутком, который можно было регулировать. Переменное электромагнитное поле возбуждало в детекторе переменный ток, если частоты вибратора и приемника совпадали, происходил резонанс и в приемнике также возникала искра, которую визуально можно было зафиксировать.

Своими опытами Герц доказал:

1)существование электромагнитных волн;

2)волны хорошо отражаются от проводников;

3)определил скорость волн в воздухе (она примерно равна скорости в вакууме).

Проведем опыт по отражению электромагнитных волн

Показывается опыт по отражению электромагнитных волн: телефон ученика убирается в полностью металлический сосуд и друзья пытаются ему дозвониться.

Сигнал не проходит

Ребята отвечают на вопрос опыта, почему нет сигнала сотовой связи.

Теперь давайте посмотрим видеофрагмент по свойствам электромагнитных волн и запишем их.

    Отражение э-м волн: волны хорошо отражаются от металлического листа, причем угол падения равен углу отражения

    Поглощение волн: э-м волны частично поглощаются при переходе через диэлектрик

    Преломление волн: э-м волны меняют свое направление при переходе из воздуха в диэлектрик

    Интерференция волн: сложение волн от когерентных источников (подробнее изучим в оптике)

    Дифракция волн – отгибание волнами препятствий

Показывается видеофрагмент « Свойства электромагнитных волн»

Сегодня мы с вами узнали историю электромагнитных волн от теории до эксперимента. Итак, ответьте на вопросы:

    Кто открыл закон о возникновении электрического поля при изменении магнитного?

    В чем заключалась гипотеза Максвелла о порождении изменяющего магнитного поля?

    Что такое электромагнитная волна?

    На каких векторах она построена?

    Что произойдет с длиной волны, если частоту колебания заряженных частиц увеличить в 2 раза?

    Какие свойства электромагнитных волн вы запомнили?

Ответы ребят:

    Фарадей – экспериментально открыл закон ЭДС и Максвелл расширил это понятие в теории

    Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле

    Распространяющееся в пространстве электромагнитное поле

    Напряженность, магнитная индукция, скорость

    Уменьшится в 2 раза

    Отражение, преломление, интерференция, дифракция, поглощение

Электромагнитные волны имеют различное применение в зависимости от своей частоты или длины волны. Они несут человечеству пользу и вред, поэтому к следующему уроку подготовьте сообщения или презентации на следующие темы:

    Как я использую электромагнитные волны

    Электромагнитное излучение в космосе

    Источники электромагнитного излучения у меня дома, их влияние на здоровье

    Воздействие электромагнитного излучения от сотового телефона на физиологию человека

    Электромагнитное оружие

А также решите к следующему занятию задачи:

    i =0.5 cos 4*10 5 π t

Задачи на карточках.

Спасибо за внимание!

Приложение 1

Электромагнитная волна:

Ф/м –электрическая постоянная

1,25664*10 -6 Гн/м –магнитная постоянная

Задачи:

    Частота вещания радиостанции «Маяк» в Московском регионе составляет 67,22Мгц. На какой длине волны работает эта радиостанция.

    Сила тока в открытом колебательном контуре изменяется по закону i =0.5 cos 4*10 5 π t . Найдите длину излучаемой волны.

Поделиться: