Как выглядит простое число. Простые числа: история и факты

Простым числом является натуральное число, которое делится только на себя и на единицу.

Остальные числа называют составными.

Простые натуральные числа

Но не все натуральные числа являются простыми числами.

Простыми натуральными числами являются лишь те из них, которые делятся только на себя и на единицу.

Примеры простых чисел:

2; 3; 5; 7; 11; 13;...

Простые целые числа

Из следует, что простыми числами являются только натуральные числа.

Это значит, что простые числа обязательно являются натуральными.

Но все натуральные числа являются одновременно целыми числами.

Таким образом, все простые числа являются целыми.

Примеры простых чисел:

2; 3; 5; 7; 11; 13; 17; 19; 23;...

Четные простые числа

Имеется только одно четное простое число - это число два.

Все остальные простые числа нечетные.

А почему не может быть простым числом четное число больше двух?

А потому, что любое четное число больше двух будет делиться на себя, не единицу и на два, т.е такое число всегда будет иметь три делителя, а возможно и больше.

Простые числа представляют собой одно из самых интересных математических явлений, которое привлекает к себе внимание ученых и простых граждан на протяжении уже более двух тысячелетий. Несмотря на то, что сейчас мы живем в век компьютеров и самых современных информационных программ, многие загадки простых чисел не решены до сих пор, есть даже такие, к которым ученые не знают, как подступиться.

Простые числа - это, как известно еще из курса элементарной арифметики, те которые делятся без остатка только на единицу и самое себя. Кстати, если натуральное число делится, кроме выше перечисленных, еще на какое-либо число, то оно именуется составным. Одна из самых знаменитых теорем гласит, что любое составное число может быть представлено в виде единственно возможного произведения простых чисел.

Несколько любопытных фактов. Во-первых, единица является уникальной в том плане, что, по сути, не принадлежит ни к простым, ни к составным числам. В то же время в научной среде все же принято относить ее именно к первой группе, так как формально она полностью удовлетворяет ее требованиям.

Во-вторых, единственным четным числом, затесавшимся в группу «простые числа» является, естественно, двойка. Любое другое четное число сюда попасть попросту не может, так как уже по определению, кроме себя и единицы, делится еще и на два.

Простые числа, список которых, как было указано выше, можно начинать с единицы, представляют собой бесконечный ряд, такой же бесконечный, как и ряд натуральных чисел. Опираясь на основную теорему арифметики, можно прийти к выводу, что простые числа никогда не прерываются и никогда не заканчиваются, так как в противном случае неизбежно прервался бы и ряд натуральных чисел.

Простые числа не появляются в натуральном ряду беспорядочно, как это может показаться на первый взгляд. Внимательно проанализировав их, можно сразу заметить несколько особенностей, наиболее любопытные из которых связаны с так называемыми числами-«близнецами». Называют их так потому, что каким-то непостижимым образом они оказались по соседству друг с другом, разделенные только четным разграничителем (пять и семь, семнадцать и девятнадцать).

Если внимательно к ним присмотреться, то можно заметить, что сумма этих чисел всегда кратна трем. Более того, при делении на тройку левого собрата в остатке всегда остается двойка, а правого - единица. Кроме того, само распределение этих чисел по натуральному ряду можно спрогнозировать, если представить весь этот ряд в виде колебательных синусоид, основные точки которых образуются при делении чисел на три и два.

Простые числа являются не только объектом пристального рассмотрения со стороны математиков всего мира, но уже давно и успешно используются в составлении различных рядов чисел, что является основой, в том числе, для шифрографии. При этом следует признать, что огромное количество загадок, связанных с этими замечательными элементами, все еще ждут своих разгадок, многие вопросы имеют не только философское, но и практичное значение.

Простое число — это натуральное (целое положительное) число , которое делится без остатка только на два натуральных числа: на и на само себя. Иными словами, простое число имеет ровно два натуральных делителя: и само число .

В силу определения, множество всех делителей простого числа является двухэлементным, т.е. представляет собой множество .

Множество всех простых чисел обозначают символом . Таким образом, в силу определения множества простых чисел, мы можем записать: .

Последовательность простых чисел выглядит так:

Основная теорема арифметики

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы, представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа являются элементарными «строительными блоками» множества натуральных чисел.

Разложение натурального числа title="Rendered by QuickLaTeX.com" height="13" width="42" style="vertical-align: -1px;"> в произведение простых чисел называют каноническим :

где — простое число, и . Например, каноническое разложение натурального числа выглядит так: .

Представление натурального числа в виде произведения простых также называют факторизацией числа .

Свойства простых чисел

Решето Эратосфена

Одним из наиболее известных алгоритмов поиска и распознавания простых чисел является решето Эратосфена . Так этот алгоритм был назван в честь греческого математика Эратосфена Киренского, которого считают автором алгоритма.

Для нахождения всех простых чисел, меньших заданного числа , следуя методу Эратосфена, нужно выполнить следующие шаги:

Шаг 1. Выписать подряд все натуральные числа от двух до , т.е. .
Шаг 2. Присвоить переменной значение , то есть значение равное наименьшему простому числу.
Шаг 3. Вычеркнуть в списке все числа от до кратные , то есть числа: .
Шаг 4. Найти первое незачёркнутое число в списке, большее , и присвоить переменной значение этого числа.
Шаг 5. Повторить шаги 3 и 4 до достижения числа .

Процесс применения алгоритма будет выглядеть следующим образом:

Все оставшиеся незачёркнутые числа в списке по завершении процесса применения алгоритма будут представлять собой множество простых чисел от до .

Гипотеза Гольдбаха

Обложка книги «Дядюшка Петрос и гипотеза Гольдбаха»

Несмотря на то, что простые числа изучаются математиками достаточно давно, на сегодняшний день остаются нерешёнными многие связанные с ними проблемы. Одной из наиболее известных нерешённых проблем является гипотеза Гольдбаха , которая формулируется следующим образом:

  • Верно ли, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел (бинарная гипотеза Гольдбаха)?
  • Верно ли, что каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел (тернарная гипотеза Гольдбаха)?

Следует сказать, что тернарная гипотеза Гольдбаха является частным случаем бинарной гипотезы Гольдбаха, или, как говорят математики, тернарная гипотеза Гольдбаха является более слабой, чем бинарная гипотеза Гольдбаха.

Гипотеза Гольдбаха получила широкую известность за пределами математического сообщества в 2000-м году благодаря рекламному маркетинговому трюку издательских компаний Bloomsbury USA (США) и Faber and Faber (Великобритания). Указанные издательства, выпустив книгу «Uncle Petros and Goldbach’s Conjecture» («Дядюшка Петрос и гипотеза Гольдбаха»), пообещали выплатить в течение 2-х лет с момента издания книги приз 1 миллион долларов США тому, кто докажет гипотезу Гольдбаха. Иногда упомянутый приз от издательств путают с премиями за решение «Задач тысячелетия» (Millennium Prize Problems). Не стоит заблужаться, гипотеза Гольдбаха не отнесена «Институтом Клэя» к «задачам тысячелетия», хотя и является при этом тесно связанной с гипотезой Римана — одной из «задач тысячелетия».

Книга «Простые числа. Долгая дорога к бесконечности»

Обложка книги «Мир математики. Простые числа. Долгая дорога к бесконечности»

Дополнительно рекомендую прочесть увлекательную научно-популярную книгу , в аннотации к которой сказано: «Поиск простых чисел - одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел».

Дополнительно процитирую начало второй главы этой книги: «Простые числа представляют из себя одну из важных тем, которые возвращают нас к самым истокам математики, а затем по пути возрастающей сложности приводят на передний край современной науки. Таким образом, было бы очень полезно проследить увлекательную и сложную историю теории простых чисел: как именно она развивалась, как именно были собраны факты и истины, которые в настоящее время считаются общепринятыми. В этой главе мы увидим, как целые поколения математиков тщательно изучали натуральные числа в поисках правила, предсказывающего появление простых чисел, - правила, которое в процессе поиска становилось все более и более ускользающим. Мы также подробно рассмотрим исторический контекст: в каких условиях математики работали и в какой степени в их работе применялись мистические и полурелигиозные практики, которые совсем не похожи на научные методы, используемые в наше время. Тем не менее медленно и с трудом, но была подготовлена почва для новых воззрений, вдохновлявших Ферма и Эйлера в XVII и XVIII в.в.»

Разделение натуральных чисел на простые и составные приписывают древнегреческому математику Пифагору. И если следовать Пифагору, то множество натуральных чисел можно разбить на три класса: {1} – множество, состоящее из одного числа – единицы; {2, 3, 5, 7, 11, 13, } – множество простых чисел; {4, 6, 8, 9, 10, 12, 14, 15, } – множество составных чисел.

Много различных загадок таит второе множество. Но сначала, давайте разберемся, что такое есть простое число. Открываем «Математический энциклопедический словарь» (Ю. В. Прохоров, издательство «Советская энциклопедия», 1988) и читаем:

«Простое число – целое положительное число, большее единицы, не имеющее других делителей, кроме самого себя и единицы: 2,3,5,7,11,13,

Понятие простого числа является основным при изучении делимости натуральных чисел; именно, основная теорема арифметики утверждает, что всякое целое положительное число, кроме 1, единственным образом разлагается в произведение простых чисел (порядок сомножителей при этом не принимается во внимание). Простых чисел бесконечно много (это предложение, названное теоремой Евклида, было известно еще древнегреческим математикам, его доказательство имеется еще в кн. 9 «Начал» Евклида). П. Дирихле (1837) установил, что в арифметической прогрессии a+bx при х=1. ,2,с с целыми взаимно простыми а и b также содержится бесконечно много простых чисел.

Для нахождения простых чисел от 1 до х служит известный с 3 в. до н. э. метод решета Эратосфена. Рассмотрение последовательности (*) простых чисел от 1 до х показывает, что с увеличением х она становится в среднем более редкой. Существуют сколь угодно длинные отрезки ряда натуральных чисел, среди которых нет ни одного простого числа (Теорема 4). В то же время встречаются такие простые числа, разность между которыми равна 2 (т. н. близнецы). До сих пор (1987) неизвестно, конечно или бесконечно множество таких близнецов. Таблицы простых чисел, лежащих в пределах первых 11 миллионов натуральных чисел, показывают наличие весьма больших близнецов (например, 10 006 427 и 10 006 429).

Выяснение распределения простых чисел в натуральном ряде чисел является весьма трудной задачей теории чисел. Она ставится как изучение асимптотического поведения функции, обозначающей количество простых чисел, не превосходящих положительного числа х. Из теоремы Евклида ясно, что при. Л. Эйлер в 1737 ввел дзета-функцию.

Он же доказал, что при

Где суммирование проводится по всем натуральным числам, а произведение берется по всем простым. Это тождество и его обобщения играют фундаментальную роль в теории распределения простых чисел. Исходя из этого, Л. Эйлер доказал, что ряд и произведение по простым р расходятся. Более того, Л. Эйлер установил, что простых чисел «много», ибо

И в то же время, почти все натуральные числа являются составными, так как при.

и, при любых (т. е. что растет, как функция). Хронологически следующим значительным результатом, уточняющим теорему Чебышева, является т. н. асимптотический закон распределения простых чисел (Ж. Адамар, 1896, Ш. Ла Валле Пуссен, 1896), заключавшийся в том, что предел отношения к равен 1. В дальнейшем значительные усилия математиков направлялись на уточнение асимптотического закона распределения простых чисел. Вопросы распределения простых чисел изучаются и элементарными методами, и методами математического анализа».

Здесь имеет смысл привести доказательство некоторых теорем, приведенных в статье.

Лемма 1. Если НОД(a, b)=1, то существуют целые числа x, y такие, что.

Доказательство. Пусть a и b взаимно простые числа. Рассмотрим множество J всех натуральных чисел z, представимых в виде, и выберем в нем наименьшее число d.

Докажем, что а делится на d. Разделим а на d с остатком: и пусть. Поскольку, оно имеет вид, следовательно,

Мы видим, что.

Поскольку мы предположили, что d – наименьшее число в J, получили противоречие. Значит, а делится на d.

Точно также докажем, что b делится на d. Значит, d=1. Лемма доказана.

Теорема 1. Если числа а и b взаимно просты и произведение bx делится на а, то х делится на а.

Доказательство1. Мы должны доказать, что ах делится на b и НОД(a,b)=1, то х делится на b.

По лемме 1, существуют x, y такие, что. Тогда, очевидно, делится на b.

Доказательство 2. Рассмотрим множество J всех натуральных чисел z таких, что zc делится на b. Пусть d – наименьшее число в J. Легко видеть, что. Аналогично доказательству леммы 1 доказывается, что а делится на d и b делится на d

Лемма 2. Если числа q,p1,p2,pn – простые и произведение делится на q, то одно из чисел pi равно q.

Доказательство. Прежде всего, заметим, что если простое число р делится на q, то p=q. Отсюда сразу следует утверждение леммы для n=1. Для n=2 оно вытекает прямо из теоремы 1: если р1р2 делится на простое число q и, то р2 делится на q(т. е).

Доказательство леммы для n=3 проведем так. Пусть р1 р2 р3 делится на q. Если р3 =q, то все доказано. Если, то согласно теореме 1, р1 р2 делится на q. Таким образом, случай n=3 мы свели к уже рассмотренному случаю n=2.

Точно также от n=3 мы можем перейти n=4, затем к n=5, и вообще, предполагая, что n=k утверждение леммы доказано, мы можем легко доказать его для n=k+1. Это убеждает нас, что лемма верна для всех n.

Основная теорема арифметики. Каждое натуральное число разлагается на простые множители единственным образом.

Доказательство. Предположим, что имеется два разложения числа а на простые множители:

Так как правая часть делится на q1, то и левая часть равенства должна делиться на q1. Согласно лемме 2, одно из чисел равно q1. Сократим обе части равенства на q1.

Проведем такое же рассуждение для q2, затем для q3, для qi. В конце концов, справа сократятся все множители и останется 1. Естественно, и слева не останется ничего, кроме единицы. Отсюда мы заключаем, что два разложения и могут различаться только порядком сомножителей. Теорема доказана.

Теорема Евклида. Ряд простых чисел бесконечен.

Доказательство. Предположим, что ряд простых чисел конечен, и обозначим последнее простое число буквой N. Составим произведение

Прибавим к нему 1. Получим:

Это число, будучи целым, должно содержать хотя бы один простой множитель, т. е. должно делиться хотя бы на одно простое число. Но все простые числа, по предположению, не превосходят N, число же M+1 не делится без остатка ни на одно из простых чисел, меньших или равных N, - всякий раз получится остаток 1. Теорема доказана.

Теорема 4. Участки составных чисел между простыми бывают любой длины. Мы сейчас докажем, что ряд состоит из n последовательных составных чисел.

Числа эти идут непосредственно друг за другом в натуральном ряду, так как каждое следующее на 1 больше предыдущего. Остается доказать, что все они составные.

Первое число

Четное, так как оба его слагаемых содержат множитель 2. А всякое четное число, большее 2, - составное.

Второе число состоит из двух слагаемых, каждое из которых кратно 3. Значит, это число составное.

Подобным же образом устанавливаем, что следующее число кратно 4 и т. д. Иначе говоря, каждое число нашего ряда содержит множитель, отличный от единицы и его самого; оно является, следовательно, составным. Теорема доказана.

Изучив доказательства теорем, продолжим рассмотрение статьи. В ее тексте был упомянут метод решета Эратосфена как способ нахождения простых чисел. Прочтем об этом методе из того же словаря:

«Эратосфена решето – метод, разработанный Эратосфеном и позволяющий отсеивать составные числа из натурального ряда. Сущность решета Эратосфена заключается в следующем. Зачеркивается единица. Число два – простое. Зачеркиваются все натуральные числа, делящиеся на 2. Число 3 – первое незачеркнутое число будет простым. Далее зачеркиваются все натуральные числа, которые делятся на 3. Число 5 – следующее незачеркнутое число – будет простым. Продолжая аналогичные вычисления, можно найти сколь угодно длинный отрезок последовательности простых чисел. Решето Эратосфена как теоретический метод исследования теории чисел развит В. Бруном (1919).

Вот наибольшее число, о котором в настоящее время известно, что оно просто:

Это число имеет около семисот десятичных знаков. Вычисления, с помощью которых было установлено, что это число является простым, проводилось на современных вычислительных машинах.

«Дзета-функция Римана, -функция, - аналитическая функция комплексного переменного, при σ>1 определяемая абсолютно и равномерно сходящимся рядом Дирихле:

При σ>1 справедливо представление в виде произведения Эйлера:

(2) где р пробегает все простые числа.

Тождественность ряда (1) и произведения (2) представляет собой одно из основных свойств дзета-функции. Оно позволяет получить различные соотношения, связывающие дзета-функцию с важнейшими теоретико-числовыми функциями. Поэтому дзета-функция играет большую роль в теории чисел.

Дзета-функция была введена как функция действительного переменного Л. Эйлером (1737, опубл. 1744), который указал ее расположение в произведение (2). Затем дзета-функция рассматривалась П. Дирихле и особенно успешно П. Л. Чебышевым в связи с изучением закона распределения простых чисел. Однако наиболее глубокие свойства дзета-функции были обнаружены после работ Б. Римана, впервые в 1859 рассмотревшего дзета-функцию как функцию комплексного переменного, им же введено название «дзета-функция» и обозначение «»».

Но возникает вопрос: какое практическое применение существует для всех этих работ о простых числах? Действительно, почти никакого применения для них нет, но существует одна область, где простые числа и их свойства применяются по сей день. Это – криптография. Здесь простые числа применяются в шифровальных системах без передачи ключей.

К сожалению, это все, что известно о простых числах. Также остается еще множество загадок. Например, неизвестно, бесконечно ли множество простых чисел, представимых как два квадрата.

«НЕПРОСТЫЕ ПРОСТЫЕ ЧИСЛА».

Я решил провести небольшие исследования с целью нахождения ответов на некоторые вопросы о простых числах. Прежде всего, мною была составлена программа, которая выдает все последовательные простые числа, меньшие 1 000 000 000 Кроме этого была составлена программа, определяющая, является ли введенное число простым. Для изучения проблем простых чисел мною был построен график, отмечающий зависимость величины простого числа от порядкового номера В качестве дальнейшего плана исследования я решил воспользоваться статьей И. С. Зельцера и Б. А. Кордемского «Занятные стайки простых чисел». Авторы выделили следующие пути исследования:

1. 168 мест первой тысячи натуральных чисел занимают простые числа. Из них 16 чисел – палиндромические – каждое равно обращенному:11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929.

Четырехзначных простых чисел всего 1061, и ни одно из них не является палиндромическим.

Пятизначных простых палиндромических чисел много. В их составе такие красавцы: 13331, 15551, 16661, 19991. Несомненно, есть стайки и такого вида: ,. Но сколько же экземпляров в каждой такой стайке?

3+х+х+х+3 = 6+3х = 3(2+х)

9+х+х+х+9 = 18+3х =3(6+х)

Видно, что сумма цифр чисел и делится на 3, следовательно эти числа сами тоже делятся на 3.

Что касается чисел вида, то среди них простыми являются числа 72227, 75557, 76667, 78887, 79997.

2. В первой тысяче чисел есть пять «квартетов», состоящих из подряд идущих простых чисел, последние цифры которых образуют последовательность 1, 3, 7, 9: (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (211, 223, 227, 229), (821, 823, 827, 829).

Сколько же таких квартетов есть среди n-значных простых чисел при n›3?

С помощью написанной мною программы был найден квартет, пропущенный авторами: (479, 467, 463, 461) и квартеты для n = 4, 5, 6. При n = 4 существуют 11 квартетов

3. Стайка из девяти простых чисел: 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879 – привлекательна не только тем, что она представляет собой арифметическую прогрессию с разностью 210, но и способностью разместиться в девяти клетках так, что образуется магический квадрат с константой, равной разности двух простых чисел: 3119 – 2:

Следующий, десятый член рассматриваемой прогрессии 2089 – также простое число. Если удалить из стайки число 199, но включить 2089, то и в этом составе стайка может образовать магический квадрат – тема для поиска.

Следует отметить, что существуют и другие магические квадраты, состоящие из простых чисел:

1847 6257 6197 3677 1307 1877 2687

2267 1427 5987 5927 1667 2027 4547

2897 947 2357 4517 3347 5867 3917

3557 4157 4397 3407 2417 2657 3257

4337 5717 3467 2297 4457 1097 2477

4817 4767 827 887 5147 5387 1997

4127 557 617 3137 5507 4937 4967

Предлагаемый квадрат любопытен поскольку

1. Он является магическим квадратом 7х7;

2. Он содержит в себе магический квадрат 5х5;

3. Магический квадрат 5х5 содержит в себе магический квадрат 3х3;

4. Все эти квадраты имеют одно общее центральное число – 3407;

5. Все 49 чисел, входящие в квадрат 7х7, оканчиваются цифрой 7;

6. Все 49 чисел, входящие в квадрат 7х7, - простые числа;

7. Каждое из 49 чисел, входящих в квадрат 7х7, представимо в виде 30n + 17.

Использованные программы были написаны мной на языке программирования Dev-С++ и их тексты я привожу в приложении (см. файлы с расширением. срр). Кроме всего перечисленного, я написал программу, раскладывающую последовательные натуральные числа на простые множители (см. Делители 1. срр) и программу, которая раскладывает на простые множители только введенное число (см. Делители 2. срр). Поскольку эти программы в скомпилированном виде занимают слишком много места, то приведены только их тексты. Однако все желающие могут скомпилировать их при наличии подходящей программы.

БИОГРАФИИ УЧЕНЫХ, ЗАНИМАВШИХСЯ ПРОБЛЕМОЙ ПРОСТЫХ ЧИСЕЛ

ЕВКЛИД(EUCLIDES)

(около 330 до н. э. – около 272 до н. э.)

О жизни самого знаменитого математика Античности сохранилось очень мало достоверных сведений. Полагают, что он учился в Афинах, чем и объясняется его блестящее владение геометрией, разработанной школой Платона. Однако, судя по всему, он не был знаком с трудами Аристотеля. Преподавал в Александрии, где заслужил высокую оценку своей педагогической деятельностью во время царствования Птолемея I Сотера. Существует предание о том, что этот царь потребовал открыть ему способ достижения быстрых успехов в математике, на что Евклид ответил, что в геометрии нет царских путей (аналогичную историю, впрочем, также рассказывают про Менхема, которого якобы о том же спросил Александр Великий). Традиция сохранила воспоминание о Евклиде как о благожелательном и скромном человеке. Евклид – автор трактатов на различные темы, но его имя ассоциируется главным образом с одним из трактатов, носящим название «Начала». Речь в нем идет о собрании работ математиков, трудившихся до него (известнейшим из них был Гиппократ из Коса), результаты которых он довел до совершенства благодаря своей способности к обобщению и трудолюбию.

ЭЙЛЕР(EULER) ЛЕОНАРД

(Базель, Швейцария 1707 – Санкт-Петербург, 1783)

Математик, механик и физик. Родился в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца, а в 1720–24 в Базельском университете, где слушал лекции по математике И. Бернулли.

В конце 1726 Эйлер был приглашен в Петербургскую АН и в мае 1727 приехал в Петербург. В только что организованной академии Эйлер нашёл благоприятные условия для научной деятельности, что позволило ему сразу же приступить к занятиям математикой и механикой. За 14 лет первого петербургского периода жизни Эйлер подготовил к печати около 80 трудов и опубликовал свыше 50. В Петербурге он изучил русский язык.

Эйлер участвовал во многих направлениях деятельности Петербургской АН. Он читал лекции студентам академического университета, участвовал в различных технических экспертизах, работал над составлением карт России, написал общедоступное «Руководство к арифметике» (1738–40). По специальному поручению академии Эйлер подготовил к печати «Морскую науку» (1749) – фундаментальный труд по теории кораблестроения и кораблевождения.

В 1741 Эйлер принял предложение прусского короля Фридриха II переехать в Берлин, где предстояла реорганизация АН. В Берлинской АН Эйлер занял пост директора класса математики и члена правления, а после смерти её первого президента П. Мопертюи несколько лет (с 1759) фактически руководил академией. За 25 лет жизни в Берлине он подготовил около 300 работ, среди них ряд больших монографий.

Живя в Берлине, Эйлер не переставал интенсивно работать для Петербургской АН, сохраняя звание её почётного члена. Он вёл обширную научную и научно-организационную переписку, в частности переписывался с М. Ломоносовым, которого высоко ценил. Эйлер редактировал математический отдел русского академического научного органа, где опубликовал за это время почти столько же статей, сколько в «Мемуарах» Берлинской АН. Он деятельно участвовал в подготовке русских математиков; в Берлин командировались для занятий под его руководством будущие академики С. Котельников, С. Румовский и М. Софронов. Большую помощь Эйлер оказывал Петербургской АН, приобретая для неё научную литературу и оборудование, ведя переговоры с кандидатами на должности в академии и т. д.

17(28) июля 1766 Эйлер вместе с семьей вернулся в Петербург. Несмотря на преклонный возраст и постигшую его почти полную слепоту, он до конца жизни продуктивно работал. За 17 лет вторичного пребывания в Петербурге им было подготовлено около 400 работ, среди них несколько больших книг. Эйлер продолжал участвовать и в организационной работе академии. В 1776 он был одним из экспертов проекта одноарочного моста через Неву, предложенного И. Кулибиным, и из всей комиссии один оказал широкую поддержку проекту.

Заслуги Эйлера как крупнейшего учёного и организатора научных исследований получили высокую оценку ещё при его жизни. Помимо Петербургской и Берлинской академий, он состоял членом крупнейших научных учреждений: Парижской АН, Лондонского королевского общества и других.

Одна из отличительных сторон творчества Эйлера – его исключительная продуктивность. Только при его жизни было опубликовано около 550 его книг и статей (список трудов Эйлера содержит примерно 850 названий). В 1909 Швейцарское естественнонаучное общество приступило к изданию полного собрания сочинений Эйлера, которое завершено в 1975; оно состоит из 72 томов. Большой интерес представляет и колоссальная научная переписка Эйлера (около 3000 писем), до сих пор опубликована лишь частично.

Необыкновенно широк был круг занятий Эйлера, охватывавших все отделы современной ему математики и механики, теорию упругости, математическую физику, оптику, теорию музыки, теорию машин, баллистику, морскую науку, страховое дело и т. д. Около 3/5 работ Эйлера относится к математике, остальные 2/5 преимущественно к её приложениям. Свои результаты и результаты, полученные другими, ученый систематизировал в ряде классических монографий, написанных с поразительной ясностью и снабженных ценными примерами. Таковы, например, «Механика, или Наука о движении, изложенная аналитически» (1736), «Введение в анализ» (1748), «Дифференциальное исчисление» (1755), «Теория движения твёрдого тела» (1765), «Универсальная арифметика» (1768–69), выдержавшая около 30 изданий на 6 языках, «Интегральное исчисление» (1768–94) и др. В XVIII в. , а отчасти и в XIX в. огромную популярность приобрели общедоступные «Письма о разных физических и философических материях, писанные к некоторой немецкой принцессе. » (1768–74), которые выдержали свыше 40 изданий на 10 языках. Большая часть содержания монографий Эйлера вошла затем в учебные руководства для высшей и частично средней школы. Невозможно перечислить все доныне употребляемые теоремы, методы и формулы Эйлера, из которых только немногие фигурируют в литературе под его именем [например, метод ломаных Эйлера, подстановки Эйлера, постоянная Эйлера, уравнения Эйлера, формулы Эйлера, функция Эйлера, числа Эйлера, формула Эйлера – Маклорена, формулы Эйлера – Фурье, эйлерова характеристика, эйлеровы интегралы, эйлеровы углы].

В «Механике» Эйлер впервые изложил динамику точки при помощи математического анализа: свободное движение точки под действием различных сил как в пустоте, так и в среде, обладающей сопротивлением; движение точки по данной линии или по данной поверхности; движение под действием центральных сил. В 1744 он впервые корректно сформулировал механический принцип наименьшего действия и показал его первые применения. В «Теории движения твёрдого тела» Эйлер разработал кинематику и динамику твёрдого тела и дал уравнения его вращения вокруг неподвижной точки, положив начало теории гироскопов. В своей теории корабля Эйлер внёс ценный вклад в теорию устойчивости. Значительны открытия Эйлера в небесной механике (например, в теории движения Луны), механике сплошных сред (основные уравнения движения идеальной жидкости в форме Эйлера и в т. н. переменных Лагранжа, колебания газа в трубах и пр.). В оптике Эйлер дал (1747) формулу двояковыпуклой линзы, предложил метод расчёта показателя преломления среды. Эйлер придерживался волновой теории света. Он считал, что различным цветам соответствуют разные длины волн света. Эйлер предложил способы устранения хроматических аберрации линз и дал методы расчёта оптических узлов микроскопа. Обширный цикл работ, начатый в 1748, Эйлер посвятил математической физике: задачам о колебании струны, пластинки, мембраны и др. Все эти исследования стимулировали развитие теории дифференциальных уравнений, приближённых методов анализа, спец. функций, дифференциальной геометрии и т. д. Многие математические открытия Эйлера содержатся именно в этих работах.

Главным делом Эйлера как математика явилась разработка математического анализа. Он заложил основы нескольких математических дисциплин, которые только в зачаточном виде имелись или вовсе отсутствовали в исчислении бесконечно малых И. Ньютона, Г. Лейбница, братьев Бернулли. Так, Эйлер первый ввёл функции комплексного аргумента и исследовал свойства основных элементарных функций комплексного переменного (показательные, логарифмические и тригонометрические функций); в частности, он вывел формулы, связывающие тригонометрические функции с показательной. Работы Эйлера в этом направлении положили начало теории функций комплексного переменного.

Эйлер явился создателем вариационного исчисления, изложенного в работе «Метод нахождения кривых линий, обладающих свойствами максимума, либо минимума. » (1744). Метод, с помощью которого Эйлер в 1744 вывел необходимое условие экстремума функционала – уравнение Эйлера, явился прообразом прямых методов вариационного исчисления XX в. Эйлер создал как самостоятельную дисциплину теорию обыкновенных дифференциальных уравнений и заложил основы теории уравнений с частными производными. Здесь ему принадлежит огромное число открытий: классический способ решения линейных уравнений с постоянными коэффициентами, метод вариации произвольных постоянных, выяснение основных свойств уравнения Риккати, интегрирование линейных уравнений с переменными коэффициентами с помощью бесконечных рядов, критерии особых решений, учение об интегрирующем множителе, различные приближённые методы и ряд приёмов решения уравнений с частными производными. Значительную часть этих результатов Эйлер собрал в своём «Интегральном исчислении».

Эйлер обогатил также дифференциальное и интегральное исчисление в узком смысле слова (например, учение о замене переменных, теорема об однородных функциях, понятие двойного интеграла и вычисление многих специальных интегралов). В «Дифференциальном исчислении» Эйлер высказал и подкрепил примерами убеждение в целесообразности применения расходящихся рядов и предложил методы обобщённого суммирования рядов, предвосхитив идеи современной строгой теории расходящихся рядов, созданной на рубеже XIX и XX вв. Кроме того, Эйлер получил в теории рядов множество конкретных результатов. Он открыл т. н. формулу суммирования Эйлера – Маклорена, предложил преобразование рядов, носящее его имя, определил суммы громадного количества рядов и ввёл в математику новые важные типы рядов (например, тригонометрические ряды). Сюда же примыкают исследования Эйлера по теории непрерывных дробей и других бесконечных процессов.

Эйлер является основоположником теории специальных функций. Он первым начал рассматривать синус и косинус как функции, а не как отрезки в круге. Им получены почти все классического разложения элементарных функций в бесконечные ряды и произведения. В его трудах создана теория γ-функции. Он исследовал свойства эллиптических интегралов, гиперболических и цилиндрических функций, ζ-функции, некоторых θ-функций, интегрального логарифма и важных классов специальных многочленов.

По замечанию П. Чебышева, Эйлер положил начало всем изысканиям, составляющим общую часть теории чисел. Так, Эйлер доказал ряд утверждений, высказанных П. Ферма (например, малая теорема Ферма), разработал основы теории степенных вычетов и теории квадратичных форм, обнаружил (но не доказал) квадратичный закон взаимности и исследовал ряд задач диофантова анализа. В работах о разбиении чисел на слагаемые и по теории простых чисел Эйлер впервые использовал методы анализа, явившись тем самым создателем аналитической теории чисел. В частности, он ввёл ζ-функцию и доказал т. н. тождество Эйлера, связывающее простые числа со всеми натуральными.

Велики заслуги Эйлера и в других областях математики. В алгебре ему принадлежат работы о решении в радикалах уравнений высших степеней и об уравнениях с двумя неизвестными, а также т. н. тождество Эйлера о четырёх квадратах. Эйлер значительно продвинул аналитическую геометрию, особенно учение о поверхностях второго порядка. В дифференциальной геометрии он детально исследовал свойства геодезических линий, впервые применил натуральные уравнения кривых, а главное, заложил основы теории поверхностей. Он ввёл понятие главных направлений в точке поверхности, доказал их ортогональность, вывел формулу для кривизны любого нормального сечения, начал изучение развёртывающихся поверхностей и т. д. ; в одной посмертно опубликованной работе (1862) он частично предварил исследования К. Гаусса по внутренней геометрии поверхностей. Эйлер занимался и отдельными вопросами топологии и доказал, например, важную теорему о выпуклых многогранниках. Эйлера-математика нередко характеризуют как гениального «вычислителя». Действительно, он был непревзойдённым мастером формальных выкладок и преобразований, в его трудах многие математические формулы и символика получили современный вид (например, ему принадлежат обозначения для e и π). Однако Эйлер также внёс в науку ряд глубоких идей, которые ныне строго обоснованы и служат образцом глубины проникновения в предмет исследования.

По выражению П. Лапласа, Эйлер явился учителем математиков второй половины XVIII в.

ДИРИХЛЕ (DIRICHLET) ПЕТЕР ГУСТАВ

(Дюрен, ныне Германия, 1805 – Геттинген, там же, 1859)

Учился в Париже, поддерживал дружеские отношения с выдающимися математиками, в частности с Фурье. По получению ученой степени был профессором университетов Бреслау (1826 – 1828), Берлина (1828 – 1855) и Геттингена, где стал заведовать кафедрой математики после смерти ученого Карла Фридриха Гаусса. Его самый выдающийся вклад в науку касается теории чисел, в первую очередь – изучения серий. Это позволило ему развить теорию серий, предложенную Фурье. Создал собственную версию доказательства теоремы Ферма, использовал аналитические функции для решения арифметических задач и ввел критерии конвергенции применительно к сериям. В области математического анализа улучшил дефиницию и понятие функции, в области теоретической механики сосредоточил внимание на изучение устойчивости систем и на Ньютоновой концепции потенциала.

ЧЕБЫШЕВ ПАФНУТИЙ ЛЬВОВИЧ

Российский математик, создатель петербургской научной школы, академик Петербургской АН (1856). Труды Чебышева положили начало развитию многих новых разделов математики.

Наиболее многочисленны работы Чебышева в области математического анализа. Ему была, в частности, посвящена диссертация на право чтения лекций, в которой Чебышев исследовал интегрируемость некоторых иррациональных выражений в алгебраических функциях и логарифмах. Интегрированию алгебраических функций Чебышев посвятил также ряд других работ. В одной из них (1853) была получена известная теорема об условиях интегрируемости в элементарных функциях дифференциального бинома. Важное направление исследований по математическому анализу составляют его работы по построению общей теории ортогональных многочленов. Поводом к её созданию явилось параболическое интерполирование способом наименьших квадратов. К этому же кругу идей примыкают исследования Чебышева по проблеме моментов и по квадратурным формулам. Имея в виду сокращение вычислений, Чебышев предложил (1873) рассматривать квадратурные формулы с равными коэффициентами (приближённое интегрирование). Исследования по квадратурным формулам и по теории интерполирования были тесно связаны с задачами, которые ставились перед Чебышевым в артиллерийском отделении военно-учёного комитета.

В теории вероятностей Чебышеву принадлежит заслуга систематического введения в рассмотрение случайных величин и создание нового приёма доказательства предельных теорем теории вероятностей – т. н. метода моментов (1845, 1846, 1867, 1887). Им был доказан больших чисел закон в весьма общей форме; при этом его доказательство поражает своей простотой и элементарностью. Исследование условий сходимости функций распределения сумм независимых случайных величин к нормальному закону Чебышев не довёл до полного завершения. Однако посредством некоторого дополнения методов Чебышева это удалось сделать А. А. Маркову. Без строгих выводов Чебышев наметил также возможность уточнений этой предельной теоремы в форме асимптотических разложений функции распределения суммы независимых слагаемых по степеням n¾1/2, где n – число слагаемых. Работы Чебышева по теории вероятностей составляют важный этап в её развитии; кроме того, они явились базой, на которой выросла русская школа теории вероятностей, вначале состоявшая из непосредственных учеников Чебышева.

РИМАН ГЕОРГ ФРИДРИГ БЕРНХАРД

(Брезеленц, Нижняя Саксония, 1826 - Селаска, близ Интры, Италия 66)

Немецкий математик. В 1846 поступил в Гёттингенский университет: слушал лекции К. Гаусса, многие идеи которого были им развиты позже. В 1847–49 слушал лекции в Берлинском университете; в 1849 вернулся в Гёттинген, где сблизился с сотрудником Гаусса физиком В. Вебером, который пробудил в нём глубокий интерес к вопросам математического естествознания.

В 1851 защитил докторскую диссертацию «Основы общей теории функций одной комплексной переменной». С 1854 приват-доцент, с 1857 профессор Гёттингенского университета.

Работы Римана оказали большое влияние на развитие математики 2-й половины XIX в. и в XX в. В докторской диссертации Риман положил начало геометрическому направлению теории аналитических функций; им введены так называемые римановы поверхности, важные при исследованиях многозначных функций, разработана теория конформных отображений и даны в связи с этим основные идеи топологии, изучены условия существования аналитических функций внутри областей различного вида (так называемый принцип Дирихле) и т. д. Разработанные Риманом методы получили широкое применение в его дальнейших трудах по теории алгебраических функций и интегралов, по аналитической теории дифференциальных уравнений (в частности, уравнений, определяющих гипергеометрические функции), по аналитической теории чисел (например, Риманом указана связь распределения простых чисел со свойствами ζ-функции, в частности с распределением её нулей в комплексной области – так называемая гипотеза Римана, справедливость которой ещё не доказана) и т. д.

В ряде работ Риман исследовал разложимость функций в тригонометрические ряды и в связи с этим определил необходимые и достаточные условия интегрируемости в смысле Римана, что имело значение для теории множеств и функций действительного переменного. Риман также предложил методы интегрирования дифференциальных уравнений с частными производными (например, с помощью так называемых инвариантов Римана и функции Римана).

В знаменитой лекции 1854 «О гипотезах, лежащих в основании геометрии» (1867) Риман дал общую идею математического пространства (по его словам, «многообразия»), включая функциональные и топологические пространства. Он рассматривал здесь геометрию в широком смысле как учение о непрерывных n-мерных многообразиях, т. е. совокупностях любых однородных объектов и, обобщая результаты Гаусса по внутренней геометрии поверхности, дал общее понятие линейного элемента (дифференциала расстояния между точками многообразия), определив тем самым то, что называется финслеровыми пространствами. Более подробно Риман рассмотрел так называемые римановы пространства, обобщающие пространства геометрий Евклида, Лобачевского и эллиптической геометрии Римана, характеризующиеся специальным видом линейного элемента, и развил учение об их кривизне. Обсуждая применение своих идей к физическому пространству, Риман поставил вопрос о «причинах метрических свойств» его, как бы предваряя то, что было сделано в общей теории относительности.

Предложенные Риманом идеи и методы раскрыли новые пути в развитии математики и нашли применение в механике и общей теории относительности. Ученый умер в 1866 от туберкулёза.

В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.

Yandex.RTB R-A-339285-1

Простые и составные числа – определения и примеры

Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.

Определение 1

Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1 .

Определение 2

Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.

Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.

Определение 3

Простые числа – это натуральные числа, имеющие только два положительных делителя.

Определение 4

Составное число – это натуральное число, имеющее более двух положительных делителей.

Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а, то есть оно будет делиться само на себя и на 1 . Дадим определение целых чисел.

Определение 5

Натуральные числа, которые не являются простыми, называют составными.

Простые числа: 2 , 3 , 11 , 17 , 131 , 523 . Они делятся только сами на себя и на 1 . Составные числа: 6 , 63 , 121 , 6697 . То есть число 6 можно разложить на 2 и 3 , а 63 на 1 , 3 , 7 , 9 , 21 , 63 , а 121 на 11 , 11 , то есть его делители будут 1 , 11 , 121 . Число 6697 разложится на 37 и 181 . Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.

Для того, чтобы было проще использовать простые числа, необходимо использовать таблицу:

Таблица для всех существующих натуральных чисел нереальна, так как их существует бесконечное множество. Когда числа достигают размеров 10000 или 1000000000 , тогда следует задуматься об использовании решета Эратосфена.

Рассмотрим теорему, которая объясняет последнее утверждение.

Теорема 1

Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

Доказательство 1

Возьмем, что а является натуральным числом, которое больше 1 , b является наименьшим отличным от единицы делителем для числа а. Следует доказать, что b является простым числом при помощи метода противного.

Допустим, что b – составное число. Отсюда имеем, что есть делитель для b , который отличен от 1 как и от b . Такой делитель обозначается как b 1 . Необходимо, чтобы условие 1 < b 1 < b было выполнено.

Из условия видно, что а делится на b , b делится на b 1 , значит, понятие делимости выражается таким образом: a = b · q и b = b 1 · q 1 , откуда a = b 1 · (q 1 · q) , где q и q 1 являются целыми числами. По правилу умножения целых чисел имеем, что произведение целых чисел – целое число с равенством вида a = b 1 · (q 1 · q) . Видно, что b 1 – это делитель для числа а. Неравенство 1 < b 1 < b не соответствует, потому как получим, что b является наименьшим положительным и отличным от 1 делителем а.

Теорема 2

Простых чисел бесконечно много.

Доказательство 2

Предположительно возьмем конечное количество натуральных чисел n и обозначим как p 1 , p 2 , … , p n . Рассмотрим вариант нахождения простого числа, отличного от указанных.

Примем на рассмотрение число р, которое равняется p 1 , p 2 , … , p n + 1 . Оно не равняется каждому из чисел, соответствующих простым числам вида p 1 , p 2 , … , p n . Число р является простым. Тогда считается, что теорема доказана. Если оно составное, тогда нужно принять обозначение p n + 1 и показать несовпадение делителя ни с одним из p 1 , p 2 , … , p n .

Если это было бы не так, тогда, исходя из свойства делимости произведения p 1 , p 2 , … , p n , получим, что оно делилось бы на p n + 1 . Заметим, что на выражение p n + 1 делится число р равняется сумме p 1 , p 2 , … , p n + 1 . Получим, что на выражение p n + 1 должно делиться второе слагаемое этой суммы, которое равняется 1 , но это невозможно.

Видно, что может быть найдено любое простое число среди любого количества заданных простых чисел. Отсюда следует, что простых чисел бесконечно много.

Так как простых чисел очень много, то таблицы ограничивают числами 100 , 1000 , 10000 и так далее.

При составлении таблицы простых чисел следует учитывать то, что для такой задачи необходима последовательная проверка чисел, начиная с 2 до 100 . При отсутствии делителя оно фиксируется в таблицу, если оно составное, то в таблицу не заносится.

Рассмотрим пошагово.

Если начать с числа 2 , то оно имеет только 2 делителя: 2 и 1, значит, его можно занести в таблицу. Также и с числом 3 . Число 4 является составным, следует разложить его еще на 2 и 2 . Число 5 является простым, значит, можно зафиксировать в таблице. Так выполнять вплоть до числа 100 .

Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.

Способ при помощи решета Эратосфена считают самым удобным. Рассмотрим на примере таблиц, приведенных ниже. Для начала записываются числа 2 , 3 , 4 , … , 50 .

Теперь необходимо зачеркнуть все числа, которые кратны 2 . Произвести последовательное зачеркивание. Получим таблицу вида:

Переходим к вычеркиванию чисел, кратных 5 . Получим:

Вычеркиваем числа, кратные 7 , 11 . В конечном итоге таблица получает вид

Перейдем к формулировке теоремы.

Теорема 3

Наименьший положительный и отличный от 1 делитель основного числа а не превосходит a , где a является арифметическим корнем заданного числа.

Доказательство 3

Необходимо обозначить b наименьший делитель составного числа а. Существует такое целое число q , где a = b · q , причем имеем, что b ≤ q . Недопустимо неравенство вида b > q , так как происходит нарушение условия. Обе части неравенства b ≤ q следует умножить на любое положительное число b , не равное 1 . Получаем, что b · b ≤ b · q , где b 2 ≤ a и b ≤ a .

Из доказанной теоремы видно, что вычеркивание чисел в таблице приводит к тому, что необходимо начинать с числа, которое равняется b 2 и удовлетворяет неравенству b 2 ≤ a . То есть, если вычеркнуть числа, кратные 2 , то процесс начинается с 4 , а кратных 3 – с 9 и так далее до 100 .

Составление такой таблицы при помощи теоремы Эратосфена говорит о том, что при вычеркивании всех составных чисел, останутся простые, которые не превосходят n . В примере, где n = 50 , у нас имеется, что n = 50 . Отсюда и получаем, что решето Эратосфена отсеивает все составные числа, которые по значению не больше значения корня из 50 . Поиск чисел производится при помощи вычеркивания.

Перед решением необходимо выяснять, является ли число простым или составным. Зачастую используются признаки делимости. Рассмотрим это на ниже приведенных примере.

Пример 1

Доказать что число 898989898989898989 является составным.

Решение

Сумма цифр заданного числа равняется 9 · 8 + 9 · 9 = 9 · 17 . Значит, число 9 · 17 делится на 9 , исходя из признака делимости на 9 . Отсюда следует, что оно составное.

Такие признаки не способны доказать простоту числа. Если нужна проверка, следует производить другие действия. Самый подходящий способ – это перебор чисел. В течение процесса можно найти простые и составные числа. То есть числа по значению не должны превосходить a . То есть число а необходимо разложить на простые множители. если это будет выполнено, тогда число а можно считать простым.

Пример 2

Определить составное или простое число 11723 .

Решение

Теперь необходимо найти все делители для числа 11723 . Необходимо оценить 11723 .

Отсюда видим, что 11723 < 200 , то 200 2 = 40 000 , а 11 723 < 40 000 . Получаем, что делители для 11 723 меньше числа 200 .

Для более точной оценки числа 11723 необходимо записать выражение 108 2 = 11 664 , а 109 2 = 11 881 , то 108 2 < 11 723 < 109 2 . Отсюда следует, что 11723 < 109 . Видно, что любое число, которое меньше 109 считается делителем для заданного числа.

При разложении получим, что 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 – это все простые числа. Весь данный процесс можно изобразить как деление столбиком. То есть разделить 11723 на 19 . Число 19 является одним из его множителей, так как получим деление без остатка. Изобразим деление столбиком:

Отсюда следует, что 11723 является составным числом, потому как кроме себя и 1 имеет делитель 19 .

Ответ: 11723 является составным числом.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Поделиться: