Аспирационные установки: рекомендации по выбору и монтажу. Что такое система аспирации воздуха и где она применяется? Монтаж аспирационных систем

Требования к охране труда и экологическому состоянию окружающей среды вокруг действующих предприятий постоянно возрастают. Совершенствуются и системы очистки. В этой статье кратко рассмотрен процесс аспирации, виды систем и принцип работы.

Система аспирации – это вид фильтрации и очищения воздуха, применяемый в производственных цехах с технологическими процессами повышенной загрязнённости.

В первую очередь – это металлургические, горнодобывающие, лакокрасочные, мебельные, химические и другие вредные производства. Главное отличие аспирации от вентиляции воздуха заключается в том, что загрязнения собираются непосредственно на рабочем месте, глобальное распространение по объёму цеха не допускается.

Типичная конструкция системы аспирации

Схематично конструкция системы аспирации включает:

  1. Вентилятор, который создаёт воздушный поток и всасывает воздух. Используется установки типа «циклон», внутри которых создается центробежная сила. Она притягивает крупные частицы загрязнений к стенкам корпуса устройства. Таким образом производится первичная грубая очистка.
  2. Уловители стружки для сбора крупных отходов.
  3. Фильтрующие элементы различной конструкции, устанавливаемые для очистки воздуха от мельчайших загрязнений. Наиболее производительные установки состоят из нескольких типов фильтров как первичной, так и последующей тонкой очистки. Они улавливают и отделяют 99% всех частиц больше 1 мкн.
  4. Улавливающие устройства и контейнеры, в которых складируются загрязнения.
  5. Связующие воздуховоды и трубы, которые устанавливаются под наклоном для предотвращения забивания твёрдыми загрязнениями.

Отходы разных типов производств различаются по своим физико-химическим свойствам, плотности и массе. Поэтому для каждого предприятия система аспирации разрабатывается индивидуально и включает необходимые элементы. Только при таком подходе вы получите эффективную очистку воздуха.

Типы аспирационных установок

Всё многообразие систем аспирации принято классифицировать по нескольким признакам:

По степени мобильности


По способу вывода отфильтрованного потока воздуха

  • Прямоточные. После очистки выводят воздух за пределы помещения. Такие системы более эффективные и экологичные.
  • Рециркуляционные. Выбрасывают очищенные и тёплые воздушные массы в цех. Главные преимущества таких систем: снижение затрат на нагрев и увлажнение воздуха, меньшая нагрузка на общую принудительную вентиляцию цеха.

Расчёт оборудования для системы аспирации

Правильный расчёт параметров оборудования – основной залог эффективной работы аспирационной установки. Расчёты сложные, так как необходимо учесть множество факторов для каждого отдельно взятого предприятия. Поэтому выполнять такую работу должны только высококвалифицированные специалисты-инженеры. Основные факторы, которые необходимо учитывать при составлении проекта системы аспирации:

  • скорость движения воздуха в системе, которая зависит от материала воздуховода;
  • площадь и объём помещения;
  • влажность и температура воздуха;
  • характер и интенсивность загрязнений;
  • продолжительность рабочей смены.

На основе полученных данных определяется и рассчитываются основные параметры системы:

  • пропускная способность каждого отдельного устройства;
  • необходимый тип фильтров, их производительность;
  • диаметр трубы воздуховода, при этом для каждого производственного участка он может быть разным;
  • проектируются точки и расположение воздуховода.

Особенности монтажа и обслуживания

Для монтажа аспирационной установки не требуется менять компоновку основного оборудования или последовательность технологического процесса. Правильно спроектированные под заказ аспирационные системы учитывают все особенности производства и интегрируются в уже существующую систему.

Эффективность и скорость аспирации установки значительно снижают негерметичные соединения. Поэтому важно не только установить систему, но и регулярно проводить техосмотры и мероприятия, направленные на предупреждение разрывов соединений, вовремя устранять выявленные дефекты. Это повысит производительность установки и снизит энергозатраты при её работе.

Экономить на проектировании и внедрении аспирационных комплексов не стоит. Сомнительное оборудование или неправильно рассчитанная установка может привести не только к повышению заболеваемости среди рабочих и снижению производительности труда, но и к закрытию предприятия.

Монтаж системы аспирации – это обязательная и необходимая техническая процедура на любом современном предприятии. Кроме того – это часть культуры производства. Промышленная аспирация не только улучшает микроклимат в производственном помещении, но и предотвращает загрязнение окружающей среды за стенами завода или фабрики.

В одну аспирационную сеть объединяется оборудование:
-работающее одновременно;
-близко расположенное;
-с одинаковой пылью, или близкой по качеству и свойствам;
-с одинаковой или с небольшой разницей температуры воздуха.
Оптимальное количество точек отсоса - не более шести, но можно больше.
Если в какой-либо машине режим воздушного потока периодически изменяется, т. е. регулируется в соответствии с технологическим процессом, то для неё проектируется отдельная вентиляционная установка; или с очень небольшим количеством дополнительных, "попутных" точек отсоса (одна - две с малым расходом).

Примеры компоновки аспирационных установок - на странице .

Определить расход воздуха на аспирацию и потери давления (сопротивление) для каждой аспирируемой машины, ёмкости, точки. Данные взять из паспортной документации оборудования или по "нормам на аспирацию" в справочной литературе. Можно использовать данные аналогичных проектов.
Расход воздуха можно определить по размерам всасывающего патрубка или аспирационного отверстия в корпусе машины, если патрубок и отверстие сделаны заводом-изготовителем и (или) по размерам проектной организации.
Если поступающий продукт эжектирует в оборудование какое-то дополнительное количество воздуха (например, двигаясь с большой скоростью по самотечной трубе), то этот дополнительный объём следует прибавить к нормативному, определив его тоже по нормам, или методами расчёта, применительными к данному конкретному питающему устройству и продукту.
Если с отводящимся продуктом из оборудования уносится некоторое количество воздуха, его также следует определить, и вычесть из расхода воздуха на аспирацию.

Излишнее эжектирование или унос воздуха можно уменьшить, если в схему питающего, отводящего устройств включить элементы для снижения скорости движения материала, продукта; повысить степень заполнения продуктом проходного сечения устройства (трубы).
Эжектирование, унос воздуха совсем незначительны и даже отсутствуют, если:
-проходное сечение питателя, отвода полностью заполнено продуктом;
-продукт поступает из постоянно заполненной ёмкости;
-в подводящей, отводящей конструкции установлено герметизирующее устройство (шлюзовой затвор, клапан и т. п.).
Если какое-либо оборудование периодически заполняется из другого большими разовыми порциями за короткое время, то между ними надо установить воздуховод свободного перетекания вытесняемого воздуха и распределения избыточных давлений, которые возникают внутри корпусов и ёмкостей в момент разгрузки-выгрузки. Переточный воздуховод - большого диаметра, вертикальный или сильнонаклонный, без горизонтальных участков.

Все расходы сложить, и разделить на объём помещения - нормальный воздухообмен для различных предприятий разный, но обычно находится в пределах 1 - 3 обмена в час. Более высокие воздухообмены применяют при расчёте общеобменной приточно-вытяжной вентиляции для удаления вредных выделений, примесей, запахов из воздуха помещений.
Для снижения повышенного вакуума в закрытом помещении следует предусмотреть приток наружного воздуха к аспирируемому оборудованию или в это помещение.

Надёжно транспортирующая скорость воздуха для различных видов пыли и сыпучих материалов принимается по рекомендациям отраслевых указаний. Можно использовать информацию тематической литературы, данные аналогичных проектов, параметры действующих аспирационных и пневмотранспортных установок предприятия.
Скорость воздуха в материалопроводах пневмотранспорта:
V = k(10,5 + 0,57·V вит) м/сек, где V вит - скорость витания частиц продукта, k - коэффициент запаса, учитывает колебания нагрузки на пневмотранспортёр. Расчёт пневмотранспортной установки рассмотрен на странице . Если считать, что нагрузка в воздуховоде аспирации постоянна, то и коэффициент запаса должен быть равен 1. Для некоторых материалов витания и пневмотранспортирования приведены в разделе "Расчёт аспирации" каталога "Чертежи, схемы, рисунки сайта".

Тип пылеотделителя выбрать с учётом характеристики пыли, планируемой (желаемой) эффективности очистки воздуха, эксплуатационной надёжности, сложности конструкции. Пропускную производительность пылеотделителя определить сложив расходы всех аспирируемых точек и прибавив 5%. Если в сети есть точки временно отключаемые (перекрытые) клапанами, на каждую добавить ещё по 100 м³/час подсоса к общему расходу.
Потери давления (сопротивление) в пылеотделителе принять из его технической характеристики.

Место установки вентилятора и воздухоочистителя выбрать с учётом их габаритов и размеров присоединяемых к ним фасонных деталей воздуховодов. Предусмотреть возможность отвода пыли и отходов, компактность сети воздуховодов, удобство обслуживания и ремонта. Учесть рекомендации по их расположению в сети. Например, всасывающий фильтр устанавливают дальше от машины с самым большим сопротивлением, чтобы создать в нём необходимый вакуум для обратной продувки ткани. Перед входом в циклон, особенно батарейный, должен быть прямой участок длиной не менее двух диаметров воздуховода. Расположение вентилятора предпочтительнее после пылеотделителя по ходу сети, т.е. на очищенном воздухе.
Намечая трассу воздуховодов, предпочтение отдавать вертикальным или сильнонаклонным, если они не нарушают промышленную эстетику. По возможности уменьшать протяжённость горизонтальных участков, количество поворотов (отводов). Избегать участков с запылённым воздухом на нагнетающей стороне вентилятора, особенно в помещениях.

Нарисовать расчётную схему аспирационной сети. Разделить сеть на участки:
-от машин до точек объединения включая тройник;
-от точки объединения до следующего тройника включительно;
-от точки последнего объединения до пылеотделителя (или вентилятора);
-участок между пылеотделителем и вентилятором;
-выхлопной участок с выхлопом.
На схеме указать расходы воздуха и потери давления в аспирируемом оборудовании. Посчитать и указать расходы воздуха на каждом участке. Указать длину каждого участка воздуховодов, включая длину всех его фасонных частей. Указать потери давления (сопротивление) пылеотделителя.

Диаметры воздуховодов каждого участка подобрать по принятой скорости v (м/сек) и расходу воздуха Q (м³/час) в "таблице данных для расчёта круглых стальных воздухопроводов", которая есть в справочной литературе по аспирации. Один из вариантов дан в разделе "Расчёт аспирации" каталога "Чертежи, схемы, рисунки сайта". Из этой же "таблицы" взять динамическое давление Нд (Па) и R - потери давления на 1 метр длины (Па/м) для этого участка. Эти данные нанести на схему или в специальную расчётную таблицу. Для подбора диаметров и расчёта воздуховодов можно пользоваться специальными .

Как правило, технологическое и транспортное оборудование поставляется в комплекте с отсасывающим патрубком. В паспорте оборудования приводятся данные о режиме аспирации.
Размеры и конфигурация отсасывающих патрубков, рекомендуемые входные скорости для различных материалов приведены в справочниках по аспирации и пневмотранспорту.
Площадь сечения входного отверстия патрубка (конфузора, "перехода") вычисляется делением расхода воздуха на входную скорость .
Для уменьшения уноса продукта и пыли, для предотвращения взрывоопасных концентраций в воздуховодах, для снижения пылевой нагрузки на фильтр, входная скорость принимается минимально возможной и зависит от вида пыли и свойств основного продукта. Открытые источники пылевыделения аспирируют верхними или боковыми отсосами. Оптимальный угол сужения конфузора 45 градусов.

На каждом участке определить сумму коэффициентов его местных сопротивлений (фасонных частей): отсасывающий патрубок (конфузор), отводы, расширения-сужения, тройник и т. п. Коэффициенты всех видов сопротивлений известны и легко находятся в нормативных таблицах.
Посчитать потери давления при прохождении воздуха через местные сопротивления: умножив динамическое давление на сумму коэффициентов участка.
Посчитать потери давления на трение воздуха по длине участка: умножив потерю в 1 метре на всю длину участка.
СЛОЖИТЬ: потери давления в аспирируемой машине + потери на местные сопротивления + потери по длине участка. Полученную СУММУ потерь каждого участка нанести на схему и в расчётную таблицу.
Потери давления в участках между тройниками считать от точки объединения (не включая тройник) до следующего объединения включая тройник.

Выравнивание давлений.
За главную магистраль принять последовательность участков, создающих наибольшие потери давления по пути движения воздуха.
К потерям давления каждого участка главной магистрали прибавить потери всех предыдущих участков главной магистрали (только главной) и указать эту сумму в точке объединения с боковым.

В каждой точке объединения (тройниках) сравнить потери давления главной магистрали с потерями в присоединяемом боковом участке. Для правильного распределения воздуха эти потери надо сделать одинаковыми. Допустимая разница - 10%. При больших расхождениях следует уменьшить диаметр участка с меньшим сопротивлением (обычно бокового), это повысит в нём скорость (при прежнем расходе!) , динамическое давление и все потери. Пересчитать новое сопротивление бокового участка и снова сравнить с магистральным в точке объединения. Уменьшать диаметр меньше 80 мм нельзя.

Если таким способом не удаётся выровнить давления, то принять вариант с наиболее близкими значениями, а в участок с меньшими потерями давления установить дополнительное местное сопротивление: диафрагму между двумя фланцами, но лучше - регулировочную задвижку. - по таблицам местных сопротивлений или по расчёту.

Выбор вентилятора.
Производительность вентилятора равна производительности пылеотделителя плюс подсос воздуха в герметизирующем устройстве пылеотделителя. Подсосы во всасывающих фильтрах принимают 15% от полезного расхода сети, или по нормам. Подсосы в циклонах учитывают, если они установлены на всасывающей стороне вентилятора: для ЦОЛ, 4БЦш, однорядного УЦ принять 150 м³/час, для двухрядного УЦ - 250 м³/час.
Давление, которое должен развивать вентилятор, равно общему сопротивлению сети по главной магистрали плюс 10% запаса.
Общее сопротивление сети - это сумма потерь давления участков только главной магистрали , включая: сопротивление первой аспирируемой машины, потери давления в воздуховодах каждого участка гл. магистрали, сопротивление пылеотделителя, потери давления на участке между пылеотделителем и вентилятором, потери давления в выхлопном участке и сопротивление выхлопа.

По давлению и расходу из всех номеров и типов пылевых вентиляторов подбирают тот, на аэродинамической характеристике которого пересечение этих параметров даёт точку наибольшего к.п.д. Можно выбирать по каталогам и рекомендациям заводов-изготовителей и торгующих организаций вентиляционной техники и оборудования.
Частоту вращения рабочего колеса вентилятора определяют по его аэродинамической характеристике. Мощность на валу вентилятора (квт): Nв. = (QH)/1000кпд где Q - производительность вентилятора в м³/сек, т. е. м³/час надо разделить на 3600; H - давление вентилятора в Па; кпд - коэффициент полезного действия вентилятора.
Мощность электродвигателя, квт: Nэ = (k·Nв)/n·п где n = 0,98 - кпд подшипников; п - кпд передачи: при посадке рабочего колеса вентилятора на вал электродвигателя п = 1, при передаче через муфту п = 0,98, при клиноремённой передаче п = 0,95. Коэффициент запаса мощности электродвигателя k = 1,15 для электродвигателей мощностью до 5 квт; k = 1,1 для электродвигателей мощностью более 5 квт. Практический пример подбора вентилятора к конкретной аспирационной сети дан на странице "Выбор и расчёт вентилятора".

Таким способом можно рассчитать вентиляционную установку для аспирации или пневмотранспорта пылевидных, мелкосыпучих материалов в низкой концентрации аэросмеси на предприятиях по хранению и переработке зерна, для очистки от примесей и обогащения крупы, на мукомольном и комбикормовом производстве, в деревообрабатывающем для удаления опилок и стружки от станков, в пищевой, текстильной промышленности и других, где есть источники выделения пыли. Низкой концентрацией считается содержание пыли или отходов не более 0,01 кг в 1 кг воздуха. Потери давления в воздуховодах с большей запылённостью рассчитываются .

Отдельные страницы посвящены аспирации приёма, хранения и очистки зерна: расчёт аспирационной установки зерноочистительного отделения, башни или пункта хлебоприёмного предприятия, системы аспирации этажей рабочего здания и силосного корпуса элеватора.

1ОССТР0Й СССР Главпромстройароект СОЮаСАНТЕХЦРОЕКТ Государственный проектный институт САНТЕХПРОЕКТ ГПЙ Цроектпрошзентиляция ВНИЙГС

Руководство по расчету воздуховодов из унифицированных деталей

Москва 1979

Dejevued by MSK & Amts



1. Общие положения...........

3 Расчет сети систем аспирации. . . . 4. Примеры расчета..........


Приложения

1. Унифицированные детали металлических воздуховодов систем общего назначения......44

2. Детали металлических воздуховодов круглого

сечения систем аспирации..........79

3. Таблица для расчета металлических воздуховодов круглого сечения...........83

4. Таблица для расчета металлических воздуховодов прямоугольного сечения........89

5. Коэффициенты местных сопротивлений унифи

цированных деталей металлических воздуховодов систем общего назначения.......109

6* Коэффициенты местных сопротивлений деталей приточных и вытяжных систем........ 143

7. Подбор диафрагм для металлических воздуховодов круглого и прямоугольного сечения. . 155

8. Величины -j- для металлических воздуховодов

систем аспирации..............187

9. Коэффициенты местных сопротивлений металлических воздуховодов систем аспирации. . . 189

10. Подбор конусных диафрагм для воздуховодов

систем аспирации..............193

11. Формулы для определения коэффициентов

местных сопротивлений........... 199

Список литературы............. 204



Государственный проектный институт Сантсхпроект


Главпромстройпроскта Госстроя СССР (ГПИ Сантехпроект), 1979

"Руководство по расчету воздуховодов из унифицированных деталей" разработано совместно ГПИ Сантехпроект Госстроя СССР, ГПИ Проектпромвентиляция и ВНЙИГС Минмон-тажспецстроя СССР.

С вводом в действие настоящего "Руководства" утрачивают силу "Указания по расчету вентиляционных воздуховодов" (серия АЗ-424).

В основу "Руководства" положены*"Инструкция по применению и расчету воздуховодов из унифицированных деталей" и "Временная нормаль на металлические воздуховода круглого сечения для систем аспирации".

Для механизации и оптимизации расчета воздуховодов разработана программа "Харьков-074" для ЭВМ Минск-22.

По вопросу приобретения этой программы следует обращать ся в отраслевой фонд алгоритмов и программ ЦНИПМСС (II7393, Москва, ГСП-I, Новые Черемушки, квартал 28. корпус 3).

Все замечания и предложения по "Руководству" просьба направлять в ГПИ Сантехпроект (105203, Москва, Нй*не -Первомайская, дом 46).

I. Общие положения

1.1. Настоящее Руководство разработано в дополнение к требованиям главы СНиП "Отопление, вентиляция и кондиционирование воздуха и предназначено для проектирования и расчета металлических воздуховодов систем вентиляции, кондиционирования воздуха, воздушного отопления (систем общего назначения) и аспирации строящихся и реконструируемых зданий и сооружений.

1.2. Металлические воздуховоды систем общего назначения следует, как правило, предусматривать из унифицированных деталей (см. приложение I). В исключительных случаях допускается применение не унифицированных деталей

(в стесненных условиях, если это обусловлено конструктивными решениями, архитектурными или другими требованиями).

1.3. Металлические воздуховоды систем аспирации следует предусматривать только из прямых участков, отводов, тройников и крестовин круглого сечения, приведенных в пр.

2. Расчет сети систем общего назначения

2.1. Авродинамический расчет сети производится с целью определения суммарного давления, необходимого для обеспечения расчетного расхода воздуха по всем участкам,

2.2. Суммарная потеря давления Р (кгс/u 2 или ГЦ, определяется как сумма потерь давления на трение и местные сопротивления

A>-£(7tf-Z)> (I)

i-де К - потери давления на трение, кгс/м 2 или Па на I м длины воздуховода;

Z - длина расчетного участка, м;

1 - потеря давления на местные сопротивления, кгс/м 2 или Па на расчетном участке.

2,3, Потеря давления на трение на I м длины воздухо-зодэ определяется по формуле

R =1гЪ > (2)

где д. - коэффициент сопротивления трения; d - диаметр расчетного участка, ы,

для воздуховодов прямоугольного сечения -гидравлический диаметр, определяемый по формуле

Здесь, S,h - размеры сторон воздуховодов, м;

рл, - динамическое давление на расчетном участке,

кгс/м 2 или Па х)


V - скорость движения воздуха на расчетном участке, м/с;

У" - удельный вес воздуха, перемещаемого по расчетному участку, кг/м 3 ;

Ускорение силы тямести 9,81 м/с 2 ; р - плотность воздуха на расчетном участке, кг/м 3 .

2.4. Коэффициент сопротивления трения определяется по формулам:

а) при 4 I0 3 ^ < 6 " 10^


б) при 6 * 1СГ Re -


(6)
(7)


0.1266 Re У б ’



х) В формуле (4) Pj дано в кгс/м, в формуле (5) в Па.

где Re - число Рейнольдса, определяемое по формуле

(8)

d - гидравлический диаметр, м (см.формулу (3); У - кинематическая вязкость, ir/c.

2.5. Потеря давления на трение на I и длины воздуховодов круглого и прямоугольного сечений, расход воздуха, скорость и динамическое давление приведены в приложениях 3 и 4. Приведенные в приложениях величины получены по формулам (1) - (8) для металлических воздуховодов при удельном весе воздуха 1,2 кг/м 3 и кинематической вязкости 15 ИГ 1 м 2 /с.

Если удельный вес воздуха отличается от 1,2 кг/м, то на потери давления, приведенные в приложениях 3 и 4, следует вводить поправочный множитель, равный JT ,

при определении мощности на валу вентилятора (см.п.2.8).

2.6. Потеря давления на местные сопротивления определяется по формуле

где £ ^ - сумма коэффициентов местных сопротивлений

на расчетном участке.

Значения коэффициентов местных сопротивлений унифицированных деталей воздуховодов приведены в приложении 5. При проектировании сетей воздуховодов рекомендуется принимать отношение расхода воздуха в ответвлении к расходу воздуха в стволе тройника не более 0,5. Это условие практически устраняет необходимость применения неунифицированных тройников. Коэффициенты местных сопротивлений неунифицированных решений, типовых воздухораспределительных устройств, жалюзийных реветок, зонтов и дефлекторов приведены в приложении 6.

2.7. При неувязке потерь давления по отдельным участкам сети воздуховодов более 10% следует предусматривать диафрагмы. Выбор мест установки диафрагм обуславливается трассировкой сетей. При наличии в ответвлениях

вертикальных участков, диафрагмы следует устанавливать на них в местах, доступных для монтажа. Установка диафрагм производится при монтаже вентиляционных сетей на соединении смежных прямых участков воздуховодов. Подбор диафрагм приведен в приложении 7.

2.8. Подбор вентиляторных агрегатов следует производить по заданным значениям производительности с учетом подсоса воздуха в вытяжных или потери воздуха в приточных системах (СНиП П-33-75 п.4.122) и суммарной потери давления Р. Причем величина Р должна быть откорректирована по ближайшей характеристике графика для подбора вентиляторного агрегата. Полное давление Ру, создаваемое вентиляторным огрегатоы, должно быть равным суммарной потере давления,определенной по формуле (1),без введения множителя по п.2.5, который вводится только при определении мощности на валу вентилятора.

2.9. Расчетное гравитационное давление Н (кгс/м 2 или Па х)) для систем вентиляции с естественным побуждением следует определять по формуле

Н-Ь(Кн -Уб)) (Ю)

н=Н(Лн-Л)> (И)

где /7 - высота воздушного столба, м;

Тн(/Ьу удельный вес (плотность) воздуха при расчетной нормируемой температуре наружного воздуха, кг/м 3 (Па);

Xb{P$) - удельный вес (плотность) воздуха, помещения, кг/м э (Па),

2.10. Высоту воздушного столба следует принимать:

а) для приточных систем - от середины приточной

камеры при нагреве в ней воздуха (или устья воздухозабо-ра при подаче воздуха в помещение без подогрева) до середины высоты помещения;

х) В формуле (10) Н дано в кгс/v 2 , в формуле (II) - в Па

б) для вытяжных систем - от середины вытяжного отверстия (или середины высоты помещения при наличии в нем приточной вентиляции) до устья вытяжной шахты.

2.II. Радиус действия систем вентиляции с естественным побуждением следует принимать:

а) для приточных систем (горизонтальное расстояние от устья воздухозабора до наиболее удаленного приточного отверстия) - не более 30 м;

б) для вытяжных систем (горизонтальное расстояние от вытяжной шахты до наиболее удаленного вытяжного отверстия) - не более 10 м.

2.12. При установке на системе вытяжной вентиляции с естественным побуждением дефлектора подбор диаметра последнего рекомендуется производить по серии

I.A94-32 "Зонты и дефлекторы вентиляционных систем".

2.13. Потери давления в сети воздуховодов систем вентиляции с естественным побуждением следует определять по формуле (I).

3. Расчет сети систем аспирации

3.2. При перемещении малозапылеиного воздуха с концентрацией массы смеси (отношением массы транспортируемого материала к массе воздуха) -*0,01 кг/кг, потеря давления на расчетном участке определяется по формуле

(12)

Приведенный коэффициент трения

следует принимать по данным, при-

веденным в приложении 8.

Примечания: I. Расчет воздуховодов (при концентрации

массы смеси менее 0,01 кг/кг) допускается производить по разделу 2;

2. Значения коэффициентов местных сопротивлений деталей металлических воздуховодов систем аспирации приведены в приложении 9.

3. Потери давления на трение для воздуховодов из гибких металлических рукавов, при отсутствии данных следует принимать в 2-2,5 раза больше величин, приведенных

в приложении 3.

3.3. Минимальная скорость движения воздуха в воздуховодах в зависимости от характера транспортируемого материала принимается по технологическим данным соответствующих отраслей промышленности. Скорость движения воздуха в воздуховодах должна быть более скорости витания частиц транспортируемого материала.

ЗА, При перемещении воздуха с концентрацией массы смеси более 0,01 кг/кг потери давления в сети на трение, местные сопротивления и подъем транспортируемых с воздухом примесей Рп (кгс/м^) следует определять по формуле

p n =nz^ie g v" (но

где К - опытный коэффициент, зависящий от характера

транспортируемого материала. Величины К и ja следует принимать по технологическим данным соответствующих отраслей промышленности;

tg - длина вертикального участка воздуховода, м;

V- объемная концентрация смеси, равная отношению массы транспортируемого материала к объему чистого воздуха. Величину

ztglf , обычно составляющую менее 3 кгс/м 2 .

uojkho не учитывать.

3.5. Расчет воздуховодов систем аспирации, как правило, следует начинать с определения количества транспортируемого материала и количества транспортируемого воздуха, исходя из рекомендуемой концентрации массы смеси. При отсутствии данных о количестве транспортируемого материала расход воздуха следует определять исходя из минимально допустимого диаметра воздуховода (80 мм)

и скорости движения воздуха (п.3.3).

3.6. Воздуховоды систем аспирации следует рассчитывать из условия одновременной работы всех отсосов. Неувязка потерь давления по отдельным участкам сети всз-духоводов долина быть не более 5%.

3.7. Регулирование потерь давления задвижками или дроссельными клапанами не допускается. Для увязки потерь давления допускается:

а) увеличивать количество воздуха, удаляемого от того или иного отсоса;

б) устанавливать диафрагмы на вертикальных участках систем аспирации при сухой неслипающейся и не волокнистой пыли (см. приложение 7).

3.8. Расчетную производительность вентиляторных агрегатов систем аспирации следует принимать с учетом подсоса или потери воздуха в систе?:ах (СНиП П-33-75 пЛ. 122).

4. ПРИМЕРЫ РАСЧЕТА

ПРИМЕР РАСЧЕТА СЕТИ ВОЗДУХОВОДОВ ВЫТЯйНСЙ СИСТЕМЫ ВЕНТИЛЯЦИИ ОБЩЕГО НАЗНАЧЕНИЯ

Расчетная схема приведена на рис. I.

Расчет ведется в следующей последовательности:

I. Нумеруют участки расчетной схемы по магистра.?., начиная с самого дальнего, а затем по ответзлекйлы.

Аспирационные системы используют в самых разных отраслях промышленности, там, где воздух загрязняется мусором, пылью и вредными веществами. Современное деревообрабатывающее, пищевое, химическое производство невозможно представить без такого оборудования, как эффективная, современная и надежная система аспирации.

Также она является обязательным элементом в металлообработке, металлургии, горнодобывающей промышленности. Требования к экологическому состоянию производства постоянно возрастают, поэтому требуются все более совершенные аспирационные системы. Без использования этого оборудования было бы невозможно не только находиться внутри производственного помещения, но и на улице вблизи многих промышленных предприятий.

Типы систем

В настоящее время на предприятиях производят расчет и монтаж аспирационных систем моноблочного или модульного типа.

  1. Моноблочная конструкция. Моноблочная система является абсолютно автономной и мобильной. Ее устанавливают рядом с оборудованием, которое нуждается в сборе отходов. Составные части моноблочной системы - вентилятор, фильтр, емкость для отходов.
  2. Модульная конструкция. Модульные аспирационные системы - сложные конструкции, изготавливаемые по индивидуальному заказу под конкретные требования заказчика. В их состав могут входить воздуховоды для систем аспирации, вентиляторы низкого давления, сепараторы. Такие конструкции могут работать как в пределах одного цеха, так и проектироваться для большого завода.

Также аспирационные системы делятся на прямоточные и рециркуляционные. Разница в том, что первые после захвата грязного воздуха очищают его и выбрасывают в атмосферу, а вторые после очистки возвращают воздух обратно в цех.

Перед монтажом аспирационных комплексов проводят их разработку, которая обязательно включает в себя составление плоскостной схемы исходя из требуемой мощности. При правильном расчете система может не только очистить цех от пыли и вредных веществ, но и вернуть в него теплый и чистый воздух, тем самым снизив расходы на отопление.

Основные компоненты системы

  • Циклон. Использует центробежную силу для того чтобы убрать из воздуха твердые частички пыли. Частички прижимаются к стенкам, затем оседают в выгрузном отверстии.
  • Крышные фильтры. Представляют собой блок фильтров и приемную камеру. Очищают воздух, затем возвращают его внутрь помещения. Эти насадки ставят на наружные бункеры и используют вместо уличных циклонов.
  • Уловители пыли и стружки. Применяются на предприятиях, которые занимаются деревообработкой.
  • Фильтрованные рукава. Внутри этих рукавов выделяются твердая составляющая воздушно-пыльной массы, иными словами воздух отделяется от загрязнений.

Применение рукавных фильтров - очень эффективный способ очистки, благодаря которому улавливается до 99.9% частиц, размер которых больше 1 мкм. А из-за использования импульсной очистки фильтров работает она максимально эффективно, что позволяет экономить электроэнергию.

Монтаж установок аспирации не требует изменения технологических процессов. Поскольку очистные конструкции делаются на заказ, они приспосабливаются к существующим техпроцессам и вписываются в существующее технологическое оборудование, применяемое, например, при деревообработке. Именно благодаря точному расчету и привязке к конкретным условиям достигается высокая эффективность работы.

Отходы удаляются из специальных бункеров с помощью контейнеров, мешков или пневмотранспорта.

Разработкой и монтажом очистных комплексов занимаются многие компании. При выборе фирмы внимательно изучите предложения, основываясь не только на рекламных материалах. Только подробный разговор о характеристиках оборудования со специалистами может помочь сделать вывод о добросовестности поставщика.

Расчет системы

Для того чтобы работа аспирационной системы была эффективной необходимо сделать правильный ее расчет. Поскольку дело это непростое, то заниматься этим должны специалисты с большим опытом.

Если расчеты сделаны неверно, то система не будет нормально работать, а на переделку уйдет много средств. Поэтому чтобы не рисковать временем и деньгами лучше доверить это дело специалистам, для которых проектирование систем аспирации и пневмотранспорта – основная работа.

При расчетах необходимо учесть массу факторов. Рассмотрим лишь некоторые из них.

  • Определяем расход воздуха и потери давления в каждой точке аспирации. Все это можно узнать в справочной литературе. После определения всех расходов проводят расчет - нужно их суммировать и разделить на объем помещения.
  • Из справочной литературы нужно взять сведения о скорости воздуха в аспирационной системе для разных материалов.
  • Определяется тип пылеуловителя. Это можно сделать, имея данные о пропускной производительности конкретного пылеулавливающего устройства. Чтобы рассчитать производительность нужно сложить расход воздуха во всех точках аспирации и увеличить полученное значение на 5 процентов.
  • Рассчитать диаметры воздуховодов. Делается это с помощью таблицы с учетом скорости движения воздуха и его расхода. Диаметр определяется индивидуально для каждого участка.

Даже этот небольшой список факторов говорит о сложности расчета аспирационной системы. Есть и более сложные показатели, с расчетом которых справится только человек со специализированным высшим образованием и опытом работы.

Аспирация просто необходима в условиях современного производства. Он позволяет соответствовать экологическим требованиям и сохранить здоровье персонала.

Для расчета аспирационной установки необходимо знать месторасположение аспирируемого оборудования, вентиляторов, пылеуловителей и расположение трассы воздуховодов.

Из чертежей общего вида установки составляем без масштаба аксонометрическую схему сети и заносим на эту схему все данные для расчета. Разбиваем сеть на участки и определяем главную магистраль и боковые параллельные участки сети.

Главная магистраль состоит из 7 участков: АБ-БВ-ВГ-ГД-ДЕ-ЕЖ-ЖЗ; и имеет 4 боковых: аБ, бВ, вг, дг и гГ.

Результаты расчета сводятся в таблицу А.1 (Приложение1).

Участок АБ

Участок состоит из конфузора, прямого вертикального участка длиной 3800 мм, отвода на 30о, прямого горизонтального участка длиной 2590 мм.

Скорость воздуха на участке АБ принимаем 12 м/с.

Расход-240 м3/ч.

Принимаем стандартный диаметр D=80 мм . Площадь поперечного сечения воздуховода, выбранного диаметра, 0,005 м2. Уточняем скорость по формуле:

где S- площадь поперечного сечения воздуховода, м2.

Потери давления по длине воздуховода определяем по формуле:

где R - потери давления на одном метре длины воздуховода, Па/м.

Расчетная длина участка, м.

По диаметру D и скорости v, по номограмме , находим потери давления на одном метре длины воздуховода и динамическое давление: R=31,4 Па/м, Нд=107,8 Па

Определяем размеры входного отверстия конфузора, исходя из площади входного отверстия по формуле:

Где v вх- скорость на входе в конфузор, для мукомольной пыли примем 0,8 м/с .

Длину конфузора (отсасывающего патрубка) находим по формуле :

где b- наибольший размер конфузора на аспирируемой машине,

d-диаметр воздуховода,

б- угол сужения конфузора.

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D>1 иб=30о-тк=0,11.

Радиус отвода находим по формуле :

где n- отношение радиуса отвода к диаметру, принимаем 2;

D-диаметр воздуховода.

Ro=2·80=160 мм

Длину отвода вычисляем по формуле :

Длина отвода на 30о:

Расчетная длина участка АБ:

LАБ=lk+l3о+Уlпр

LАБ=690+3800+2590+84=7164 мм

Потери давления на участке АБ находим по формуле 12:

RlАБ=31,4·7,164=225 Па

Участок аБ

Участок аБ состоит из конфузора, прямого вертикального участка длиной 4700 мм, прямого горизонтального участка длиной 2190 мм и бокового участка тройника.

Скорость воздуха на участке аБ принимаем 12 м/с.

Расход -360 м3/ч.

Определяем требуемый диаметр по формуле 8:

Принимаем стандартный диаметр D=100 мм . Площадь поперечного сечения воздуховода, выбранного диаметра, 0,007854 м2. Уточняем скорость по формуле (10):

По диаметру D и скорости v, по номограмме , находим R = 23,2 Па/м, Нд=99,3 Па.

Примем одну из сторон конфузораb=420 мм.

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D>1 и б=30о-тк=0,11.

Ro=2·100=200 мм

Коэффициент сопротивления отвода на 30о находим из таблицы 10 .

Длина отвода на 30о

Расчетная длина участка аБ:

LаБ=lk+2·l9o+ Уlпр

LаБ=600+4700+2190+105=7595 мм.

Потери давления на участке аБ находим по формуле 12:

RlаБ=23,2·7,595=176 Па

Коэффициенты сопротивления тройника находим, задавшись диаметром объединенного воздуховода D=125 мм, S=0,01227 м2.

Отношение площадей и расходов определяем по формуле:

гдеSп- площадь проходного воздуховода, м2;

Sб- площадь бокового воздуховода, м2;

S-площадь воздуховода объединенных потоков, м2;

Lб- расход бокового воздуховода, м3/ч;

L-расход воздуховода объединенных потоков, м3/ч.

Отношение площадей и расходов определяем по формулам (18):

Коэффициент сопротивления тройника определяем из таблицы 13 : проходного участка жпр=0,0 и бокового участка жбок=0,2.

Hпт=Rl+УтHд

Потери давления на участке АБ составляют:

Нпт.п=225+(0,069+0,11+0,0)107,7=244 Па

Потери давления на участке аБ составляют:

Нпт.б=176+(0,069+0,11+0,2)99,3=214 Па

УНпт.п=Нпт.п+Нм.п.=244+50=294 Па,

где Нм.п.=50,0 Па - потери давления в бункере из табл. 1.

УНпт.б=Нпт.б+Нм.б.=214+50,0=264 Па,

где Нб.п.=50,0 Па - потери давления в бурате из табл. 1.

Разница давлений между участками АБ и аБ:

Ндиаф=294-264=30 Па

Так как разница составляет 10 %, значит нет необходимости выравнивать потери в тройнике.

Участок БВ

Участок состоит из прямого горизонтального участка длиной 2190 мм, проходного участка тройника.

Расход-600м3/ч.

Диаметр воздуховода на участке БВ -125 мм.

По диаметру D и скорости v по номограмме , находим R=20 Па/м, Нд=113 Па.

Расчетная длина участка БВ:

RlБВ=20,0·2,190=44 Па

Участок бВ

Участок бВ состоит из конфузора, прямого вертикального участка длиной 5600 мм и бокового участка тройника.

Скорость воздуха на участке бВ принимаем 12 м/с.

Расход -1240 м3/ч.

Определяем требуемый диаметр по формуле 8:

Принимаем стандартный диаметр D=180 мм . Площадь поперечного сечения воздуховода, выбранного диаметра, 0,02545 м2. Уточняем скорость по формуле (10):

По диаметру D и скорости v, по номограмме , находим R = 12,2 Па/м, Нд=112,2 Па.

Определяем размеры входного отверстия конфузора, исходя из площади входного отверстия по формуле 13:

Примем одну из сторон конфузора b=300 мм.

Длину конфузора (отсасывающего патрубка) находим по формуле 15:

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D>1 и б=30о-тк=0,11.

Радиус отвода находим по формуле 15

Ro=2·180=360 мм

Коэффициент сопротивления отвода на 30о находим из таблицы 10 .

Длину отвода вычисляем по формуле 16.

Длина отвода на 30о

Расчетная длина участка бВ:

LаБ=lk+l30o+ Уlпр

LбВ=220+188+5600=6008 мм.

Потери давления на участке бВ находим по формуле 12:

RlБВ=12,2·6,008=73 Па.

Коэффициенты сопротивления тройника находим, задавшись диаметром объединенного воздуховода D=225 мм, S=0,03976 м2.

Коэффициент сопротивления тройника определяем из таблицы 13 : проходного участка жпр=-0,2 и бокового участка жбок=0,2.

Потери давления на участке рассчитывают по формуле:

Hпт=Rl+УтHд

Потери давления на участке БВ составляют:

Нпт.п=43,8-0,2113=21,2 Па

Потери давления на участке бВ составляют:

Нпт.б=73+(0,2+0,11+0,069)112,0=115 Па

Сумарные потери на проходном участке БВ:

УНпт.п=Нпт.п+Нм.п.=21,2+294=360 Па,

Суммарные потери на боковом участке:

УНпт.б=Нпт.б+Нм.б.=115+80,0=195 Па,

где Нб.п.=80,0 Па - потери давления в колонке аспирационной из табл.1.

Разница давлений между участками БВ и бВ:

Так как разница составляет 46%, что превышает допустимые10%, то необходимо выравнивание потерь давлений в тройнике.

Выполним выравнивание с помощью дополнительного сопротивления в виде боковой диафрагмы.

Коэффициент сопротивления диафрагмы находим по формуле:

По номограмме определяем значение 46 . Откуда заглубление диафрагмы а=0,46·0,180=0,0828 м.

Участок ВГ

Участок ВГ состоит из прямого горизонтального участка длиной 800 мм, прямого вертикального участка длиной 9800 мм отвода на 90о и бокового участка тройника.

Скорость воздуха на участке ВГ принимаем 12 м/с.

Расход-1840 м3/ч.

Принимаем стандартный диаметр D=225 мм. Площадь поперечного сечения воздуховода, выбранного диаметра, 0,03976 м2. Уточняем скорость по формуле (10):

По диаметру D и скорости v, по номограмме , находим R= 8,0 Па/м, Нд=101,2 Па.

Радиус отвода находим по формуле 15

Ro=2·225=450 мм

Коэффициент сопротивления отвода на 90о находим из таблицы 10 .

Длину отвода вычисляем по формуле 16.

Длина отвода на 90о

Расчетная длина участка ВГ:

LВГ=2·l9o +Уlпр

LВГ=800+9800+707=11307 мм.

RlВГ=8,0·11,307=90 Па

Участок вг

Участок вг состоит из конфузора, отвода на 30о,вертикального участка длиной 880 мм, горизонтального участка 3360 мм и проходного участка тройника.

Расход-480 м3/ч.

Определяем размеры входного отверстия конфузора, исходя из площади входного отверстия по формуле 13:

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D>1 и б=30о-тк=0,11.

Ro=2·110=220 мм

Коэффициент сопротивления отвода на 30о находим из табл. 10 .

Длину отвода вычисляем по формуле 16.

Длина отвода на 30о

Расчетная длина участка вг:

Lвг=lk+l30+ Уlпр

lвг=880+115+300+3360=4655 мм.

Потери давления на участке вг находим по формуле 12:

Rlгв=23·4,655=107 Па

Участок дг

Участок дг состоит из конфузора, прямого вертикального участка длиной 880 мм и бокового участка тройника.

Расход -480 м3/ч.

Выбираем скорость 12 м/с. Определяем требуемый диаметр по формуле 8:

Принимаем стандартный диаметр D=110 мм . Площадь поперечного сечения воздуховода, выбранного диаметра, 0,0095 м2. Уточняем скорость по формуле 10:

По диаметру D и скорости v, по номограмме , находим R=23,0 Па/м, Нд=120,6 Па.

Определяем размеры входного отверстия конфузора, исходя из площади входного отверстия по формуле 13:

Примем одну из сторон конфузора b=270 мм.

Длину конфузора (отсасывающего патрубка) находим по формуле 14:

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D>1 и б=30о-тк=0,11.

Расчетная длина участка вг:

Lвг=lk+l30+ Уlпр

lвг=880+300=1180 мм.

Потери давления на участке вг находим по формуле 12:

Тогда, потери давления по длине воздуховода:

Rlгв=23·1,180=27,1 Па

Коэффициенты сопротивления тройника находим, задавшись диаметром объединенного воздуховода D=160 мм, S=0,02011 м2.

Отношение площадей и расходов определяем по формуле 18:

Коэффициент сопротивления тройника определяем из таблицы 13 : проходного участка жпр=0,0 и бокового участка жбок=0,5.

Потери давления на участке рассчитывают по формуле:

Hпт=Rl+УтHд

Потери давления на участке вг составляют:

Нпт.п=107+(0,069+0,11+0,0)120,6=128 Па

Потери давления на участке дг составляют:

Нпт.б=27+(0,11+0,5)120,6=100 Па

Суммарные потери на проходном и боковом участках:

УНпт.п=Нпт.п+Нм.п.=128+250=378 Па,

УНпт.б=Нпт.б+Нм.б.=100+250=350 Па,

где Нм.п.=250,0 Па - потери давления в триере из табл. 1.

Разница давлений между участками вг и дг:

Ндиаф=378-350=16 Па

Так как разница составляет 7 %, что не превышает допустимые10%, то необходимости выравнивания потерь давлений в тройнике нет.

Участок гГ

Участок состоит из прямых горизонтальных участков длиной 2100 мм, и проходного участка тройника.

Расход участка гГ равен сумме расходов на участках вг и дг.

Расход -960 м3/ч.

Диаметр воздуховода на участке гГ-160 мм.

Площадь поперечного сечения воздуховода, выбранного диаметра, 0,02011 м2.

Уточняем скорость по формуле 10:

По диаметру D и скоростиv, по номограмме , находим R=14,1 Па/м, Нд=107,7 Па

Расчетная длина участка гГ:

LгГ=2100 мм.

Потери давления по длине находим по формуле 12:

RlгГ=14,1·2,1=29,6Па

Коэффициенты сопротивления тройника находим, задавшись диаметром объединенного воздуховода D=250 мм, S=0,04909 м2.

Отношение площадей и расходов определяем по формуле 18:

Коэффициент сопротивления тройника определяем из таблицы 13 : проходного участка жпр=0,2 и бокового участка жбок=0,6.

Потери давления на участке рассчитывают по формуле:

Hпт=Rl+УтHд

Потери давления на участке ВГ составляют:

Нпт.б=90+(0,15+0,2)101,2=125,4 Па

Потери давления на участке гГ составляют:

Нпт.п=29,6+0,6·107,7=94,2 Па

Суммарные потери на проходном и боковом участках:

УНпт.п=Нпт.п+Нм.п..=125,4+360,4=486 Па,

УНпт.б=Нпт.б+Нм.б =94.2+378=472 Па,

Разница давлений между участками ВГ и гГ:

Ндиаф=486-472=14 Па

Разница - менее 10%.

Участок ГД

Участок состоит из прямого горизонтального участка длиной 1860 мм.

Расход участка ГД - 2800 м3/ч

Диаметр воздуховода на участке ГД-250 мм, S=0.04909м2.

Уточняем скорость по формуле 10:

По диаметру D и скорости v, по номограмме , находим R=11,0 Па/м, Нд=153,8 Па.

Площадь входного отверстия в циклон равна площади входного патрубка S2=0,05 м2

Расчетная длина участка ГД:

lГД=1860 мм.

Потери давления на участке ГД находим по формуле 12:

Тогда, потери давления по длине воздуховода:

RlГД=11,0·1,86=20,5Па

Потери давления на участке ГД составляют:

УНпт.п=20+486=506 Па

Участок ДЕ

Циклон 4БЦШ-300.

Расход воздуха с учетом подсоса воздуха:

Потери давления в циклоне равны сопротивлению циклона и составляют Нц=951,6 Па.

Суммарные потери на участке ДЕ:

Участок ЕЖ

Участок состоит из конфузора, трех отводов на 90о, прямых горизонтальных участков 550 мм и 1200 мм, прямого вертикального участка длиной 2670 мм, прямого горизонтального участка 360 мм и диффузора.

Расход на участке ЕЖ определим с учетом подсоса в циклоне, равного 150 м3/ч:

Скорость воздуха после циклона 10…12 м/с, так как после циклона воздух очищен.

Скорость воздуха на участке ЕЖ принимаем 11 м/с.

Определяем требуемый диаметр по формуле 8:

Принимаем стандартный диаметр D=315 мм, S=0,07793 м2.

Уточняем скорость по формуле 10:

По диаметру D и скорости v, по номограмме , находим R = 3,8 Па/м, Нд=74,3Па.

Площадь входного отверстия в переходном патрубке S1=0,07793м2, а площадь выходного отверстия циклона S2=0,090 м2, так как S1

Примем одну из сторон конфузора b=450 мм.

Длину конфузора находим по формуле 15:

Коэффициент сопротивления конфузора определяется из табл. 8 в зависимости от lк/D=0,6 и б=30о - тк=0,13.

Необходимо выявить, конфузором или диффузором является переходной патрубок на входе в вентилятор.

Так как на выходе патрубок диаметром 315 мм, а диаметр на входе в вентилятор 320 мм, то переходный патрубок является диффузором со степенью расширения:

Радиус отвода находим по формуле 15:

Коэффициент сопротивления отвода на 90о находим из табл. 10 .

Длину отвода вычисляем по формуле 16:

Расчетная длина участка ЕЖ:

LЕЖ=989,6*3+2670+360+1200+550=7749 мм.

RlЕЖ=3,78·7,749=29 Па.

УНпт.п=1458+29+(0,13+0,1+0,15·3)74,3=1538 Па.

Участок ЖЗ

Участок состоит из диффузора, прямого вертикального участка длиной 12700 мм, отвода на 90 и диффузор с защитным зонтом.

Расход воздуха на этом участке равен расходу при входе в вентилятор, т.е. 3090м3/ч.

Скорость воздуха-11,0 м/с.

Диаметры воздуховодов на участках принимаем равными диаметру до вентилятора, т.е. 315мм.

По диаметру D и скорости v, по номограмме , находим R = 3,8 Па/м, Нд=68,874,3 Па.

Определим, чем служит переходной патрубок на выходе из вентилятора.

Площадь отверстия вентилятора S1=0.305х0,185=0,056 м2, площадь поперечного сечения воздуховода диаметром 315 ммS2=0,07793м2.

S2>S1, следовательно имеет место диффузор со степенью расширения:

Зададимся углом расширения диффузора б=30?. Тогда из табл. 4 коэффициент сопротивления диффузора ж=0,1.

Расчетная длина участка ЕЖ:

lЕЖ=12700 мм.

Потери давления по длине воздуховода определяем по формуле 11:

RlЕЖ=3,78·12,7=48,0 Па.

На трубе предусмотрен диффузор с защитным зонтом.

Коэффициент потерь находим в табл. 6 ж=0,6.

Потери давления на участке ЕЖ составляют:

УНпт.б=48+(0,1+0,6)74,3=100 Па.

Общее сопротивление сети по главной магистрали составляет:

УНпт.п=100+1538=1638 Па.

С учетом коэффициента запаса 1,1 и возможного вакуума в помещениях цеха 50 Па требуемое давление, развиваемое вентилятором.

Поделиться: